						Sr. No)	
		ENTI	RANC	E TEST-	2023	,		
	SCHO	OL OF ENV	IRONME	NTAL AND E	ARTH	SCIE	NCES	5
			APPLIED	GEOLOGY				
	Questions : Allowed :	60 70 Minutes		R	Questio Coll No. :	on Book	let Ser	ies A
1.	Write your En fill up the nece	trance Test Roll Ne essary information	umber in the sp	for Candidates : ace provided at the t rovided on the OMF	op of this p R Answer S	page of (Sheet.	Question	Booklet and
2.	entries in the	Original Copy, car	ndidate should	Candidate's Copy g ensure that the two tem are exactly copi	copies are	e aligned	l properl	ly so that the
3.	All entries in to only.	he OMR Answer S	heet, including	answers to questions	s, are to be	recorded	l in the C	Driginal Copy
4.	darken the cir	cle of the appropri	iate response c	e for each question ompletely. The inco this effect shall be e	mplete da	rkened of	s A, B, C circle is	C and D and not correctly
5.		e/black ball point p pencil should be u		he circle of correct	/most appi	ropriate	response	e. In no case
6.		n more than one cir be considered wro		for any question. A	question v	with mo	re than o	one darkened
7.		'Negative Marki om the total score of		answers. Each wro	ng answer	will lea	d to the	deduction of
8.	Only those ca admission.	ndidates who would	ld obtain positi	ve score in Entrance	e Test Exa	minatio	n shall b	e eligible for
9.	Do not make	any stray mark on	the OMR shee	t.				
10.	. Calculators an	d mobiles shall not	be permitted in	side the examination	n hall.			
11.	. Rough work,	if any, should be de	one on the blan	k sheets provided w	ith the que	estion bo	oklet.	
12.	. OMR Answer be evaluated.	Sheet must be hand	lled carefully a	nd it should not be for	lded or mu	tilated in	which c	case it will not
13.	. Ensure that yo	our OMR Answer S	Sheet has been s	signed by the Invigil	ator and th	e candid	late hims	self/herself.
14.				AR Answer Sheet to the and hand over the				
SM-29	9550-A			1 ⊗				[Turn over

- 1. The second most abundant element in the solar system 7. is:
 - (A) Hydrogen
 - (B) Helium
 - (C) Iron
 - (D) Oxygen
 - 2. Which of the following is not a metamorphic rock?
 - (A) Anthracite
 - (B) Schist
 - (C) Eclogite
 - (D) Puddingstone
 - 3. The Love waves generated during an earthquake are:
 - (A) Compressional waves
 - (B) Shear waves
 - (C) Longitudinal waves
 - (D) Transverse waves
 - 4. The oldest eon in the Geological time scale is named:
 - (A) Archaean
 - (B) Proterozoic
 - (C) Hadean
 - (D) Phanerozoic
 - 5. The correct sequence of thrust faults encountered as we move from South to North in the Himalayas is:
 - (A) MFT-MBT-MCT
 - (B) MBT-MFT-MCT
 - (C) MCT-MBT-MFT
 - (D) MFT-MCT-MBT
 - 6. Which of the following matches with respect to Goldschmidt's classification of chemical elements is 12. incorrect?
 - (A) Atmophile-Oxygen
 - (B) Lithophile-Lithium
 - (C) Chalcophile-Cadmium
 - (D) Siderophile-REE

- The terrestrial planet in the solar system that displays retrograde rotation is:
- (A) Mercury
- (B) Venus
- (C) Mars
- (D) Uranus

8. The conversion of anhydrite to gypsum is an example of _____.

- (A) Oxidation
- (B) Hydration
- (C) Carbonation
- (D) Hydrolysis
- 9. Which of the following is the non-radioactive isotope of lead (Pb)?
 - (A) Pb²⁰⁴
 - (B) Pb²⁰⁸
 - (C) Pb²¹⁰
 - (D) Pb²⁰⁷
- 10. Badland topography generally occurs in:
 - (A) Calcareous rocks in humid region
 - (B) Shale in arid region
 - (C) Clay in sub-humid region
 - (D) Calcareous rock in arid region
- 11. Which one of the following would indicate the presence of a former glacial lake?
 - (A) Loess
 - (B) Varved clay
 - (C) Till
 - (D) Outwash sands
 - . Which of the following is not an erosional feature of karst topography?
 - (A) Blind valleys
 - (B) Lapies
 - (C) Poljes
 - (D) Dripstones

2 ⊗

- environments of formation : Environment Feature 1. Aeolian P. Tombolo 2. Fluvial O. Moulin R. Zeugen 3. Galcial S. Billabong 4. Coastal (A) P-4, Q-3, R-2, S-1 (B) P-3, Q-4, R-2, S-1 (C) P-4, Q-3, R-1, S-2 (D) P-3, Q-4, R-l, S-2 14. Diamond exhibits cleavage while pyroxenes show cleavage. (A) Cubic, prismatic (B) Octahedral, cubic (C) Octahedral, prismatic (D) Cubic, pyramidal 15. In the interference figure of an uniaxial mineral, the melatope indicates: (A) Position of optic axis (B) Position of optic normal (C) Vibration direction of ordinary ray (D) The direction along which mineral is elongated The phenomenon of double refraction is shown by: 16. (A) Isotropic minerals (B) Uniaxial and biaxial minerals (C) Uniaxial minerals (D) Biaxial minerals 17. Most of the rock forming silicates are studied under light microscopy while most of the ore 21. forming minerals are studied under light microscopy. (A) Transmitted, reflected (B) Reflected, transmitted (C) Transmitted, transmitted (D) Reflected, reflected
- 13. Match the geomorphic features with their 18. environments of formation :
 Identify the tectosilicate mineral from the Mohs' scale of hardness, which produces clay mineral due to chemical weathering.
 - (A) Orthoclase
 - (B) Quartz
 - (C) Talc
 - (D) Topaz
 - 19. Match the following minerals with their appropriate physical properties seen in hand specimen.
 - P. Pyroxene 1. Pearly lustre
 - Q. Calcite 2. Rhombohedral cleavage
 - R. Garnet 3. Prismatic habit
 - S. Muscovite 4. Perfect dodecahedral form
 - (A) P-1, Q-2, R-4, S-3
 - (B) P-3, Q-2, R-4, S-1
 - (C) P-3, Q-4, R-2, S-1
 - (D) P-l, Q-4, R-3, S-2
 - 20. Which of the following statements about the rock forming silicate minerals is correct?
 - (A) Sorosilicates have an Si:O ratio of 2:7.
 - (B) Phyllosilicates are minerals having isolated silica tetrahedra linked by divalent cations
 - (C) All amphiboles crystallise in monoclinic system
 - (D) Zeolite minerals like laumontite, analcite, wairakite, heulandite etc. are essentially ionosilicates.
 - Which of the following optical properties of a mineral is seen exclusively under cross nicols?
 - (A) Body color
 - (B) Pleochroism
 - (C) Interference color
 - (D) Cleavage plane

[Turn over

3 ⊗

- 22. Muscovite crystallizes in the ______ system.
 - (A) Tetragonal
 - (B) Hexagonal
 - (C) Isometric
 - (D) Monoclinic
- 23. Which of the following is not a silicate mineral?
 - (A) Augite
 - (B) Apatite
 - (C) Andalusite
 - (D) Anorthite
- 24. Which of the following processes does not help in 'magmatic differentiation'?
 - (A) Assimilation with the surrounding country rocks
 - (B) Fractional crystallization
 - (C) Mingling with other magmas
 - (D) Equilibrium crystallization
- 25. The system of classification of igneous rocks in which the constituent minerals of an igneous rock are considered both chemically and qualitatively:
 - (A) Dunham classification
 - (B) Shands classification
 - (C) CIPW classification
 - (D) IUGS classification
- 26. Match the following:

Texture

Rocks

- A. Rapakivi textureB. Ophitic textureC. Spinifex textureC. Spinifex textureC. Spinifex textureC. Spinifex texture
- (A) A-l, B-2, C-3
- (B) A-3, B-2, C-l
- (C) A-3, B-l, C-2
- (D) A-l, B-3, C-2

SM-29550-A

- 27. The most abundant volatile that is present within magmatic liquids is:
 - (A) Water vapor
 - (B) Carbon dioxide
 - (C) Nitrogen
 - (D) Sulphur dioxide
- 28. Which of the following volcanic eruptions is the most dangerous?
 - (A) Hawaiian
 - (B) Vesuvian
 - (C) Strombolian
 - (D) Pelean
- 29. Select the rock that is not a metamorphic one.
 - (A) Biotite gneiss
 - (B) Staurolite schist
 - (C) Chert
 - (D) Quartzite
- 30. Select the correct order of metamorphic rocks with increasing grade of metamorphism.
 - (A) Slate, schist, phyllites, gneiss, migmatite
 - (B) Slate, phyllites, gneiss, schist, migmatite
 - (C) Slate, schist, gneiss, phyllites, migmatite
 - (D) Slate, phyllites, schist, gneiss, migmatite
- 31. Which one of the following sedimentary structures is formed by liquefaction?
 - (A) Graded bedding
 - (B) Longitudinal scour
 - (C) Convolute lamination
 - (D) Flute cast
- 32. Which of the following sedimentary rocks is most prone to chemical weathering?
 - (A) Sandstone
 - (B) Shale
 - (C) Limestone
 - (D) Conglomerate
- 4 ⊗

- 33. Choose the sandstone that is mineralogical and textural 38. immature.
 - (A) Quartz arenite
 - (B) Quartz wacke
 - (C) Arkose
 - (D) Feldspathic wacke
- 34. Most of the coal deposits of India belong to _____ Era.
 - (A) Paleozoic
 - (B) Mesozoic
 - (C) Cenozoic
 - (D) Mesozoic-Cenozoic boundary
- The supergene enrichment process that commonly enhances the grade of primary copper deposits is essentially a _____ process.
 - (A) Contact metasomatic
 - (B) Metamorphic
 - (C) Weathering
 - (D) Hydrothermal
- 36. 'Cockade ore' is formed when:
 - (A) Ore is arranged in successive layers
 - (B) Small crystals develop haphazardly within 41. cavities
 - (C) Fissure fillings are composed of alternate bands of quartz and altered country rocks
 - (D) Breccia fragments are surrounded by crusts
- 37. Arrange the elements Fe, O, H, He, Si in decreasing $_{42.}$ order of their abundance in the solar system.
 - (A) H>He>O>Si>Fe
 - (B) He>H>Si>O>Fe
 - (C) H>He>O>Fe>Si
 - (D) Si>Fe>H>He>O

SM-29550-A

The number of alpha (a) particles emitted to produce a daughter isotope of ²⁰⁶Pb from a parent isotope of ²³⁸U by radioactive decay is:

- (A) 2
- (B) 4
- (C) 6
- (D) 8
- 39. Airy's model of isostasy :
 - (A) Requires mountains to have higher density than the oceanic crust
 - (B) Requires mountains to have lower density than the oceanic crust
 - (C) Requires mountains to have the same density as oceanic crust
 - (D) Does not consider the densities of mountain and oceanic crust
- 40. Parallel magnetic reversal patterns observed on the ocean floor near mid-oceanic ridges suggest the:
 - (A) Formation of new crust in the geologic past
 - (B) Presence of mineral deposits in the oceanic crust
 - (C) Origin of Earth's magnetic field in the inner core
 - (D) Non-uniform movement of tectonic plates in the geologic past
 - Earth's main magnetic field is generated due to:
 - (A) Magnetic material present in the crust
 - (B) Inter planetary interactions
 - (C) Electric current present in the outer core
 - (D) Polar wandering
 - The sum of specific yield and specific retention in an aquifer is called:
 - (A) Transmissivity
 - (B) Storativity
 - (C) Porosity
 - (D) Hydraulic conductivity

5 ⊗

- 43. A confined aquifer of cross sectional area (A) has a 47. hydraulic gradient of 5 * 10⁻³ and its coefficient of permeability is 2 m/day. 250 m³ of water is collected from the aquifer over a period of 24 hours. What is the value of 'A' in m²?
 - (A) 2500
 - (B) 25000
 - (C) 250
 - (D) 25
- 44. According to fold classification by interlimb angle, ones with interlimb angle of 100 degrees would be classified as:
 - (A) Gentle
 - (B) Open
 - (C) Isoclinal
 - (D) Tight
- 45. Tabular cross-bedding is formed due to the migration of ______.
 - (A) 2D dunes only
 - (B) 2D ripples and dunes
 - (C) 3D ripples only
 - (D) 3D ripples and dunes
- 46. A shallow focus earthquake strikes near a seismological observatory. A seismologist first observes _____ on the seismograph.
 - (A) P-waves
 - (B) S waves
 - (C) Rayleigh waves
 - (D) Love waves

SM-29550-A

- . In an outcrop of an intensely folded and metamorphosed terrain, a geologist measures the dip of the bedding to be 70 degrees whereas the dip of the axial planar foliation is about 35 degrees. What should be the most plausible interpretation?
 - (A) It is the normal limb of an overturned fold
 - (B) It is the overturned limb of an overturned fold
 - (C) It is a recumbent fold
 - (D) It is an upright non-plunging fold
- 48. In which of the following tectonic settings are the highest mountain chains and thickest crust found?
 - (A) Island arc
 - (B) Continental arc
 - (C) Continental collision
 - (D) Transcurrent
- 49. Which of the following is associated with a divergent plate boundary?
 - (A) Ridge
 - (B) Trench
 - (C) Island arc
 - (D) Accretionary prism
- 50. Find the odd one out.
 - (A) *Murex*
 - (B) Nerita
 - (C) Turbo
 - (D) Venus
- Aristotle's lantern present in some echinoids is an apparatus for _____.
 - (A) Reproduction
 - (B) Respiration
 - (C) Chewing
 - (D) Aiding the water circulatory system
- 6 ⊗

52.	The Paleozoic Po Formation is exposed in the 57.	Rapid mass movement of water saturated regolith is called:
	(A) Spiti Basin	(A) Landslide
	(B) Kashmir-Liddar Valley	(B) Creep
	(C) Kumaon-Garhwal	(C) Solifluction
	(D) Nepal	(D) Earth flow
53.	The shortest period of the Paleozoic is: 58.	The valency of iron in hematite is
	(A) Ordovician	(A) 2
	(B) Silurian	(B) 3
	(C) Cambrian	(C) 4
	(D) Permian	(D) 5
54.	Choose the Archaean stratigraphic unit from the 59 .	Which of the following oil field in NOT located in the
	following:	western part of India?
	(A) Cuddapah Supergroup	(A) Bombay High(B) Artheology
	(B) Erinpura Granite	(B) Ankleshwar
	(C) Haimanta Group	(C) Gandhar(D) Moran
	(D) Bababudan Group	(D) MoranMatch the tectonic units listed in Group I with their
55.	Choose the youngest stratigraphic unit from those ^{60.}	geographical locations in Group II.
	given :	Group I Group II
	(A) Lameta Beds	P. Continent-oceanic 1. Himalayas
	(B) Garbyang Fm.	lithosphere convergence
	(C) Barakar Fm.	Q. Continent-continent 2. Andes
	(D) Bhuj Fm.	collision
56.	The mass movement process in which cohesive blocks	R. Continental rift system3. Japanese islands
	of earth move on a failure plane with concave-up geometry, is known as:	S. Oceanic-oceanic 4. East Africa
	(A) Debris flow	lithosphere convergence
	(B) Creep	(A) P-2, Q-1, R-4, S-3
	(C) Rotational slide	(B) P-2, Q-3, R-4, S-1
	(D) Translational slide	(C) P-3, Q-4, R-l, S-2 (D) P 4, Q 1, P 2, S 2
		(D) P-4, Q-1, R-2, S-3

SM-29550-A

ROUGH WORK

- lines		Sr. No. <u>120</u>
•	ENTRANC	E TEST-2022
	SCHOOL OF ENVIRONMEN	NTAL AND EARTH SCIENCES
		GEOLOGY
	Questions : 60	Question Booklet Series
Time	Allowed : 70 Minutes	Roll No. :
	Instructions	for Candidates :
1.		(C), Spanopene - Aller (C), Spanopene -
2.	OMR Answer Sheet has an Original Copy an making entries in the Original Copy conditate	d a Candidate's Copy glued beneath it at the top. Whil e should ensure that the two copies are aligned properly against each item are exactly copied in the Candidate'
3.	All entries in the OMR Answer Sheet, includin Copy only.	g answers to questions, are to be recorded in the Origina
4.	Choose the correct / most appropriate response darken the circle of the appropriate response co read by the OMR Scanner and no complaint to	e for each question among the options A, B, C and D an mpletely. The incomplete darkened circle is not correctl this effect shall be entertained
5.	Use only blue/black ball point pen to darken the gel/ink pen or pencil should be used.	e circle of correct/most appropriate response. In no cas
6.	Do not darken more than one circle of options f response shall be considered wrong.	or any question. A question with more than one darkened
7.	There will be 'Negative Marking' for wrong of 0.25 marks from the total score of the candid	answers. Each wrong answer will lead to the deduction date.
8.		ive score in Entrance Test Examination shall be eligible
9.	Do not make any stray mark on the OMR sheet.	(D) -Proverterine Gaussian
	Calculators and mobiles shall not be permitted	
11.	Rough work, if any, should be done on the blan	k sheets provided with the question booklet
12.	OMR Answer Sheet must be handled carefully will not be evaluated.	and it should not be folded or mutilated in which case i
13.	Ensure that your OMR Answer Sheet has bee herself.	n signed by the Invigilator and the candidate himself.
	reserve or the Culture	IR Answer Sheet to the invigilator who will first tear off late and hand over the Candidate's Copy to the candidate.
V-1474	1 1	l [Turn over

SEAL

- The function of sutures in ammonites is to :
 - (A) Increase the shell strength
 - (B) Increase the surface area for the secretion of gas or liquid
- (C) Regulate the specific gravity of the anima
- (D) All of these
- 2. Which of the following flora belongs to the Lower Gondwana?
 - (A) Gangamopteris
 - (B) Cladophlebis
 - (C) Sphenopteris
 - (D) Ptilophyllum
- Select the correct stratigraphic sequence of the Vindhyan Supergroup :
 - (A) Rewa Bhander Kaimur Semri
 - (B) Semri-Rewa-Kaimur-Bhander
 - (C) Semri Bhander Rewa Kaimur
 - (D) Semri-Kaimur-Rewa-Bhander
- 4. Ophiolitic mélange is characteristic of :
 - (A) Lesser Himalaya
 - (B) Higher Himalaya
 - (C) Outer Himalaya
 - (D) Indus Suture Zone
- 5. The Guryul Ravine in Kashmir is famous for which of the following boundary ?
 - (A) Cretaceous Tertiary
 - (B) Precambrian Cambrian
 - (C) Neogene Quaternary
 - (D) Permian Triassic
- 6. Main boundary fault lies between :
 - (A) Outer Himalaya and Lesser Himalaya
 - (B) Lesser Himalaya and Higher Himalaya
 - (C) Higher Himalaya and Trans Himalaya
 - (D) None of these

SV-14741-D

- 7. Microwave spectrum having longer wavelength can penetrate :
 - (A) Cloud
 - (B) Fog
 - (C) Rain
 - (D) All of these
- 8. Geostationary satellites orbit at an altitude of :
 - (A) 36000 kms
 - (B) 26000 kms
 - (C) 30000 kms
 - (D) 45000 kms
- 9. The terminal support of a bridge on either side of the river valley is called as :
 - (A) Piers
 - (B) Abutment
 - (C) Rock bolt
 - (D) None of these
- Nebulae from which the first generation of stars formed, consisted entirely of small atoms which were generated by :
 - (A) Supernova explosions
 - (B) Big-bang nucleosynthesis
 - (C) Stellar nucleosynthesis
 - (D) Both (B) and (C)
- 11. If a, b and c are the average P-wave velocities in the lower mantle, outer core and inner core respectively, then :
 - (A) a > b > c
 - (B) a > c > b
 - (C) c > a > b
 - (D) c > b > a

- 12. What shall be the colour of vegetation in a False 17. Colour Composite (FCC) ?
 - (A) Green
 - (B) Blue
 - (C) Yellow
 - (D) Red
- 13. Which type of dam usually has triangular profile and can resist the forces by its own weight ?
 - (A) Geotechnical dam
 - (B) Arch dam
 - (C) Gravity dam
 - (D) Embankment dam
- 14. Which of the following region does not fall in seismic zone IV/V ?
 - (A) Assam
 - (B) Jammu and Kashmir
 - (C) Central India
 - (D) Kutchchh (Gujarat)
- 15. Which of the following is not a tectonic force responsible for folding or faulting rocks ?
 - (A) Compressive force
 - (B) Tensional force
 - (C) Shear force
 - (D) None of these
- 16. Which of the following is responsible for 21. landslides ?
 - (A) Rainfall
 - (B) Topography
 - (C) Lithology
 - (D) All of these

SV-14741-D

- The important Ozone-Depleting Chemical(s) (ODCs) is/are :
- (A) Chlorofluorocarbons
- (B) Halon
- (C) Methyl chloroform
- (D) All of these
- 18. Which of the following rocks are not present in the Himalayan foreland basin ?
 - (A) Souni Volcanics
 - (B) Murree
 - (C) Siwalik
 - (D) Subathu
- 19. The Cretaceous-Tertiary (K/T) boundary is delineated at :
 - (A) 50 Ma
 - (B) 66 Ma
 - (C) 70 Ma
 - (D) 75 Ma
- 20. Which of the following measures is part of proactive strategy regarding disaster management?
 - (A) Prevention
 - (B) Mitigation
 - (C) Preparedness
 - (D) All of these
 - The dripstones that rise from the floor of a carbonate cave are called :
 - (A) Stalactites
 - (B) Stylolites
 - (C) Stalagmites
 - (D) Geodes

10

[Turn over

- 22. Coral reefs are generally found in the latitudinal 28. The interference colour of a mineral depends on : extensions of :
 - (A) 20°N 20°S
 - (B) 30°N 30°S
 - (C) 45°N 45°S
 - (D) 60°N 60°S
- 23. Solifluction is related to :
 - (A) Creep
 - (B) Mudflow
 - (C) Rock fall
 - (D) Rock slide
- 24. Pot holes are commonly found on the :
 - (A) Sea floor
 - (B) Mountains
 - (C) Cave floor
 - (D) Channel floor
- 25. How many sets of cleavage are present in quartz?
 - (A) One set
 - (B) Two set
 - (C) Three set
 - (D) No cleavage
- 26. Which among the following are single chain silicates ?

- (A) Inosilicates
- (B) Sorosilicates
- (C) Cyclosilicates
- (D) Nesosilicates
- 27. In VIBGYOR, from left to right the :
 - (A) Wavelength increases
 - (B) Wavelength decreases
 - (C) Frequency increases
 - (D) None of these

SV-14741-D

- - (A) Phase difference
 - (B) Thickness of the slide
 - (C) Birefringence
 - (D) All of these
- 29. Which of the following is a non-pleochroic mineral?
 - (A) Biotite
 - (B) Quartz
 - (C) Hornblende
 - (D) Hypersthene
- 30. Quartz crystallizes in which of the following crystal system ?
 - (A) Cubic system
 - (B) Monoclinic system
 - (C) Triclinic system
 - (D) Hexagonal system
- Which of the following crystal system has three 31. mutually perpendicular axes of different lengths?
 - (A) Cubic
 - (B) Tetragonal
 - (C) Orthorhombic
 - (D) Hexagonal
- 32. Which of the following twinning is characteristic of plagioclase ?
 - (A) Cyclical
 - (B) Polysynthetic
 - (C) Penetration
 - (D) None
- 33. Muscovite is a _____ mineral.
 - (A) Uniaxial positive
 - (B) Uniaxial negative
 - (C) Biaxial positive
 - (D) Biaxial negative

34. Crystals of igneous rocks that are too small to be 40. A sedimentary rock composed of angular gravels

- (A) Phaneritic
- (B) Aphanitic
- (C) Porphyrytic
- (D) Pyroclastic
- 35. The ultrabasic rock constituted solely of olivine is called :
 - (A) Dunite
 - (B) Kimberlite
 - (C) Periodotite
 - (D) Harzburgite
- 36. The plutonic equivalent of basalt rock is :
 - (A) Andesite
 - (B) Gabbro
 - (C) Granite
 - (D) Rhyolite
- 37. Which of the following factor doesn't affect metamorphism?
 - (A) Diagenesis
 - (B) Temperature
 - (C) Pressure
 - (D) Chemically active fluids
- 38. An equigranular texture in which most of the grains are euhedral is called :
 - (A) Allotriomorphic
 - (B) Hypidiomorphic
 - (C) Panidiomorphic
 - (D) Perthitic
- 39. In clastic sediments, the correct order of 44. Metal content of an ore is denoted by : decreasing grain size is :
 - (A) Boulder > pebble > silt > sand
 - (B) Granule > pebble > clay > silt
 - (C) Cobble > granule > silt > clay
 - (D) Granule > pebble > sand > silt

SV-14741-D

- is called :
- (A) Shale
- (B) Breccia
- (C) Sandstone
- (D) Conglomerate
- 41. A rudaceous sedimentary rock consisting of clasts of several different rock types is called :
 - (A) Oligomictic
 - (B) Petromictic
 - (C) Polymictic
 - (D) None
- 42. Which of the following process is not involved in the formation of clastic sedimentary rocks ?
 - (A) Weathering
 - (B) Transportation
 - (C) Deposition
 - (D) Precipitation
- 43. Bauxite is the primary source of which of the following minerals?
 - (A) Aluminium
 - (B) Oxygen
 - (C) Titanium
 - (D) Carbon

 - (A) Tenor
 - (B) Gangue
 - (C) Ore content
 - (D) None of these

• 1

Turn over

15	T						
45.	The	e solid, insoluble or	rganic	e matter which yields	s 49	. Wł	nich of the following rock contributes the
			ocarb	ons on heating and	l	hig	hest amount of radioactive heat in the Earth's
		illation is called :				cru	st?
	(A)	Crude oil				(A)	Granite
	(B)	High density natu	iral ga	as		(B)	
	(C)	Kerogen				(C)	
	(D)	None of these			50	(D)	
46.	Mat	tch the fuels in Gr	oup I	with corresponding	50.		most important tool of a geologist is :
		as of occurrence in					Field diary
	Gro			pup II		(B)	Clinometer
	P.	Uranium				(C) (D)	Hammer
			1.	Vastan, Gujarat	51.		
	Q.	Lignite	2.	Singrauli,	51.	deal	ich of the following sub-disciplines of geology s in the physical characteristics of the whole
	_			Madhya Pradesh		Eart	h and the forces operating in the Earth?
	R.	Bituminous coal	3.	Digboi, Assam			Geomorphology
	S.	Petroleum	4.	Jadugoda,		(B)	Tectonics
				Jharkhand		(C)	Structural Geology
	(A)	P-4, Q-1, R-3, S-2	2			(D)	
	(B)	P-4, Q-1, R-2, S-3	3		52.	The	water in the zone of aeration is called :
	(C)	P-3, Q-4, R-2, S-1	1	· · ··································			Hygroscopic water
		P-2, Q-4, R-1, S-3				(B)	Connate water
47.				ty towards sulphides		(C)	Vadose water
		nown as :	amm	ly lowards sulphides			None of these
	(A)				53.	As p	per Darcy's law the rate of flow of water
		Siderophiles					igh a porous media is :
	(B)	Chalcophiles					Directly proportional to head loss
	(C)	Lithophiles				(B)	Inversely proportional to length of flow path
	(D)	Atmophiles					Applicable only under laminar conditions All of these
48.	Each	carbon atom in di	amor	nd is joined to four	54.		
	other	carbon atoms by :				fault	ch of the following is a low angle reverse
	(A)	Metallic bonds					Normal fault
	(B)	Ionic bonds					Strike-slip fault
	(C)	van der Waals bon	d	27-10 (D)			Thrust fault
		Covalent bonds	-				All of these
	. ,	Contrast Contras			5		

SV-14741-D

 $\diamond \diamond \diamond \diamond \diamond$

	rigid deformation ?	50.	mace lossing are also known as :	0.0
2			(A) Body fossils	20
	(A) Translation		(B) Chemical fossils	
	(B) Rotation		(C) Pseudofossils	
	(C) Strain		(D) Ichnofossils	
	(D) All of these	59.		
56.	Which of the following fold has inclined fold		range, wide geographical distribution and rapid	
	axis ?		evolutionary rate ?	\mathbf{D}
	(A) Plunging fold		(A) Trace fossil	
	(B) Non-plunging		(B) Index fossil	
	(C) Homocline		(C) Living fossil	
	(D) None of these		(D) Chemical fossil	300klet
57.	Which among the following separates a younger	60.		
	sedimentary rock unit from an intrusive igneous	00.	Which among the following is a late Eocene- Oligocene horse?	While
	rock or metamorphic rock?			operly idate's
	(A) Non-conformity		(A) Eohippus	
	(B) Disconformity		(B) Mesohippus	riginal
1	(C) Angular unconformity		(C) Orohippus	
	(D) None		(D) Pliohippus	D and rectly
				rectify
				case
				tened
				ction
				rible
				gible
	·			
				se it
				elf/
				off
				ite

ver

55. Which of the following components reflect non- 58. Trace fossils are also known as :

SV-14741-D

		ENTI	RANC	E TES	ST-202	0			M (A)
	SCHOOL	OF ENVI	RONMEN	TAL AN	D EARTI	H SC	CIEN	CES	(B) Me
		and 27" 45"S	APPLIED	GEOLO)GY	ion R	ooklet S	eries	
	Duestions : llowed :	60 70 Minutes		i V ben i (A	Roll No. :				
	And Barchinite		Instructions						6T (A)
	and fill up the	rance Test Roll Inecessary inform	nation in the sp	paces provid	ed on the Own	A115 W	ci blice	Destined	12 100
	making entries so that the entri Copy.	Sheet has an O in the Original ries made in the	Copy, candida Original Copy	y against eac	h item are exa	ctly co	pied in	the Car	ndidate's
	Copy only.	ne OMR Answe							
	darken the circ read by the OM	rrect / most app le of the approp AR Scanner and	no complaint	to this effect	shall be enterta	ained.	icu circi	0 15 1100	o concernity
5.	gel/ink pen or	black ball point pencil should b	e used.						
6.	response shall	more than one of be considered	wrong.						
	of 0.25 marks	Negative Man from the total s	core of the can	ididate.					18) 61
8.	Only those ca for admission	ndidates who w	ould obtain po	sitive score	n Entrance Tes	t Exar	ninatior	shall b	e eligible
		any stray mark o							
10). Calculators a	nd mobiles shal	l not be permit	ted inside the	e examination h	nall.			
11	. Rough work,	if any, should b	e done on the b	lank sheets	provided with t	he que	stion bc	oklet.	
12	2. OMR Answe will not be ev	r Sheet must be valuated.	handled carefi	ally and it sho	ould not be fold	ed or 1	nutilate	d in wh	
	herself.	our OMR Ans							
14	4. At the end of the original C	the examination MR sheet in pre	n, hand over the sence of the Ca	e OMR Answ indidate and l	ver Sheet to the hand over the Ca	invigil andida	ator whete's Cop	y to the	canandate.
J-31			1	1				-	Turn over

 is similar to : (A) Granite (B) Peridotite (C) Granite-gneiss (D) Hornfels 4. Which country is located at the mid oceanic 9. ridge ? (A) Iceland (B) Greenland (C) Switzerland (D) Scotland (C) Switzerland (D) Scotland (C) Idiochromatic (D) Scotland (C) Idiochromatic (D) None of the above (A) Exfoliation (B) Denudation (C) Hydration (D) All the above 		
 (C) Siderites (D) Achondrites (E) Fakers (C) Varves (D) Eskers (D) Eskers (D) Eskers (E) Eskers (E) Coranite composition of upper mantle 8. (E) Granite (C) Granite gneiss (D) Hornfels (E) Sea caves (D) Hornfels (E) Sea caves (D) Hornfels (E) Sea caves (D) Sea Arch (E) Coranite (C) Sea caves (D) Hornfels (E) Sea caves (D) Hornfels (E) Greenland (C) Switzerland (D) Scotland (D) Scotland (D) Scotland (D) None of the above (E) Exfoliation (E) Denudation (C) Cyclosilicates (D) All the above 	 from Sun are : (A) Mercury, Earth, Mars, Venus (B) Mercury, Venus, Mars, Earth (C) Mercury, Venus, Earth, Mars (D) Mercury, Mars, Earth, Venus 2. The composition of Earth is generally comwith : (A) Tektites 	of : (A) 27° 35"N and 27° 45"S (B) 27°N and 27°S (C) 27° 21"N and 27° 29"S (D) 27° 11"N and 27° 45"S pared 7. The thinly laminated deposits formed in glacial lakes are known as : (A) Kames
 3. The average mineral composition of upper mantle 8. is similar to : (A) Granite (B) Peridotite (C) Granite-gneiss (D) Hornfels 4. Which country is located at the mid oceanic 9. ridge ? (A) Iceland (B) Greenland (C) Switzerland (D) Scotland (C) Idiochromatic (D) None of the above (A) Exfoliation (B) Denudation (C) Hydration (D) All the above 	(C) Siderites	(C) Varves(D) Eskers
 (A) Granite (B) Peridotite (C) Granite-gneiss (D) Hornfels (D) Hornfels (D) Sea Arch (E) Sea caves (E) Sea caves (E) Sea caves (D) Sea Arch (E) Sea caves (E) Sea Arch (E) Sea Caves (E) All the above 	3. The average mineral composition of upper is similar to :	coastal land a structure is developed called :
 (D) Hornfels 4. Which country is located at the mid oceanic 9. ridge ? (A) Iceland (B) Greenland (C) Switzerland (D) Scotland (D) None of the above (D) Scotland (D) None of the above (A) Exfoliation (B) Denudation (C) Hydration (D) All the above 	(A) Granite(B) Peridotite(C) Granite-gneiss	(B) Wave cut cliff(C) Sea caves
ridge ? (A) Iceland (B) Greenland (C) Switzerland (D) Scotland 5. The combined effect of weathering and erosion 10. (A) Exfoliation (A) Exfoliation (B) Denudation (C) Hydration (C) Hydration (D) None of the above (A) Phyllosilicates (C) Cyclosilicates (D) Tectosilicates (D) All the above (C) All the above	(D) Hornfels4. Which country is located at the mid	oceanic 9 The minerals, which exhibit constant an
 (C) Switzerland (D) Scotland (D) Scotland (D) None of the above (D) None of the above (Extraction is an example of a	(A) Iceland	(A) Allochromatic(B) Pseudochromatic
 5. The combined effect of weathering and each of the combined effect of the combin	(C) Switzerland(D) Scotland	(D) None of the above
 (B) Denudation (C) Cyclosilicates (D) All the above 	is : julion notice of the bal	(A) Phyllosilicates
2	(B) Denudation	(C) Cyclosilicates
		2

- 11.
 - (A) MgSiO₃
 - (B) FeSiO,
 - (C) MnSiO₂
 - (D) CaSiO₄
- 12. The plagioclase feldspar alters to a clay mineral 17. called :
 - (A) Kaolinite
 - (B) Sericite
 - (C) Montmorillonite
 - (D) Gibbsite
- 13. The Zircon mineral crystallize in :
 - (A) Orthorhombic
 - (B) Isometric
 - (C) Tetragonal
 - (D) None of the above
- 14. A face parallel to the vertical crystallographic axis is :
 - (A) Basal face
 - (B) Prism face
 - (C) Pyramidal face
 - (D) Pedion face
- 15. Galena is characterized by :
 - (A) 2 axes of four-fold symmetry
 - (B) 2 axes of three-fold symmetry
 - (C) 3 axes of four-fold symmetry
 - (D) All the above

- The chemical formula of enstatite is : 16. Staurolite mineral is characterized by :
 - (A) Carlsbad twinning
 - (B) Contact twinning
 - (C) Penetration twinning
 - (D) Manebach twinning
 - The plutonic equivalent of Andesite is :-
 - (A) Granite
 - (B) Granodiorite
 - (C) Diorite
 - (D) None of these
 - 18. A light spongy rock of acidic composition that floats on water :
 - (A) Pumice
 - (B) Obsidian
 - (C) Pitchstone
 - (D) None of the above
 - 19. Hornfels texture is formed due to :
 - (A) Dynamic Metamorphism
 - (B) Contact Metamorphism
 - (C) Metasomatism
 - (D) Anataxis
 - 20. Regional metamorphism of shales leads to the formation of :
 - (A) Schist
 - (B) Slate
 - (C) Gneiss
 - (D) All the above

JJ-317-A

		(C) 0.1 mm to 0.01 mm
		(D) > 0.1 mm
	22.	Bedding in which beds/laminations lie at an angle to the planes of general bedding :
		(A) Graded Bedding
		(B) Angular Bedding
		(C) Current Bedding
		(D) Convolute Bedding
	23.	A sandstone dominantly composed of sharply angular grains is :
1		(A) Orthoquartzite
		(B) Arkose
		(C) Greywacke

21. The grain size of sand is

(B) 2 mm to 0.1 mm

(A) > 2 mm

(D) Grit

Sedimentary rock composed of angular rock 24. fragments is called :

- (A) Conglomerate
- (B) Breccia
- (C) Sandstone
- (D) Shale

25. The ore deposit formed simultaneously with the host rock is referred as :

- (A) Hydrothermal Ore deposit
- (B) Epigenetic Ore deposit
- (C) Syngenetic Ore deposit
- (D) None of the above

- The deposition occurred along joints and bedding 26. plans in limestones is known as :
 - (A) Ladder veins
 - (B) Gash veins
 - (C) Composite veins
 - (D) Sheeted veins
- Sideronitic texture is typically associated with : beds/laminations lie at an 27.
 - (A) Early magmatic deposits
 - (B) Late magmatic deposits
 - (C) Metamorphic rocks
 - (D) Sedimentary rocks
 - 28. In lower Gondwana the coal found is mainly :
 - (A) Lignite
 - (B) Anthracite
 - (C) Bituminous
 - (D) All the above
 - Most abundant element in the Solar System is 29.
 - (A) Hydrogen
 - (B) Helium
 - (C) Argon
 - (D) Iron
 - Which of the following element does not belon 30. to Rare Earth Element Group ?
 - (A) Lanthanum
 - (B) Europium
 - (C) Samarium
 - (D) Zirconium
 - Which of the following is the absolute datir 31. technique ?
 - (A) Optically Luminescence dating
 - (B) Dendrochronology
 - (C) Rb-Sr Geochronology
 - (D) Lichenometry

JJ-317-A

J.

4 -

32. The half-life of Sm-Nd chronological system is : 36.

- (A) 106×10^{6} years
- (B) 106×10^{7} years
- (C) 106×10^8 years
- (D) 106×10^9 years
- 33. The discontinuity found within the earth's crust 37.is known as :
 - (A) Gutenberg discontinuity
 - (B) Mohorovicic discontinuity
 - (C) Moho discontinuity
 - (D) Conrad discontinuity
- 34. The average bouguer anomaly for the ocean as a whole is :
 - (A) Positive
 - (B) Negative
 - (C) Neutral
 - (D) Unpredictable
- 35. The velocity of p waves Vp is given as :

(A)
$$Vp = \sqrt{\frac{K + \frac{4}{3}\mu}{\rho}}$$

(B) $V = \sqrt{\frac{K + \frac{1}{3}\theta}{K + \frac{1}{3}\theta}}$

(C)
$$Vp = \sqrt{\frac{K + \frac{3}{3}\partial}{\rho}}$$

ρ

(D)
$$Vp = \sqrt{\frac{K + \frac{5}{3}\phi}{\rho}}$$

The shadow zone of the earthquakes lies between :

- (A) 98° and 198°
- (B) 103° and 143°
- (C) 103° and 108°
- (D) 114° and 128°
- Water that has been out of contact from hydrological cycle for an appreciable geological time :
- (A) Meteoric water
- (B) Vadose water
- (C) Magma water
- (D) Connate water
- 38. The actual volume of water that flows through an aquifer in specified time is given as :

(A)
$$Q = \frac{KC(d_1 - d_2)/2}{d}$$

(B)
$$Q = \frac{KAT(h_1 - h_2)/2}{d/1}$$

(C)
$$Q = \frac{KA(c_1 - c_2)/4}{c}$$

(D)
$$Q = \frac{KA(h_1 - h_2)}{d}$$

- 39. The maximum permissible limit of Arsenic in groundwater given by Bureau of Indian Standards is :
 - (A) 10µgL⁻¹
 - (B) 20µgL⁻¹
 - (C) 50µgL⁻¹
 - (D) 80µgL⁻¹

JJ-317-A

5 *

[Turn over

2	S. 4. 1
2	2 - 26
	1

21

21

24

2:

40.

The various dripstone features found in caverns 45. Isokatabases are the line connecting points of :

are collectively called :

- (A) Stalagmites
- (B) Stalactites
- (C) Speleothems
- (D) Sinkholes

Schuppen structures are associated with : 41.

- (A) Normal faulting
- (B) Strike slip faulting
- (C) Thrust faulting
- (D) Recumbent folding
- 42. The fold with sharp and angular crest and trough is referred as :
 - (A) Chevron fold
 - (B) Conjugate fold
 - (C) Parasitic fold
 - (D) None of the above
- 43. Mullions are formed under :
 - (A) Tensional stress regime
 - (B) Compressional strain regime
 - (C) Compressive stress regime
 - (D) Tensile stress regime
- 44. The Hade of a fault is :
 - (A) 90 + dip
 - (B) 90 dip
 - (C) Plunge + Rake
 - (D) Plunge + dip

- (A) Equal subsidence
- (B) Equal uplift
- (C) Equal degree of tectonic activity
- (D) Equal degree of volcanic activity
- The band of earthquakes in a down going plate 46. is referred as :
 - (A) Decollement zone
 - (B) Owen fracture zone
 - (C) Wadati-benioff zone
 - (D) Shear zone
- The western coast of the South American Plate 47. and the eastern edge of the Nazca Plate is delineated by :
 - (A) Mariana Trench
 - (B) Peru-Chile Trench
 - (C) Aleutian Trench
 - (D) Juan de fuca Trench
- Oceanic crust sediments and fragments that have 48. been smoothed and smashed against the continents are known as :
 - (A) Amorites
 - (B) Trilobites
 - (C) Ophiolites
 - (D) Smashorites
- Species that existed for relatively shorter time 49. period with wide geographical distribution are referred as :

:d

- (A) Trace fossils
- (B) Index fossils
 - (C) Formation fossils
- (D) Dry fossils

JJ-317-A

J.

6 e e

50.	The	e first vertebrate appeared during :	
		Triassic	
	(B)	Jurassic	
	(C)	Ordovician	
	(D)	Pre-Cambrian	
51.	The is :	most characteristic feature of the Cynognathus	
	(A)	Presence of swimming paddles	
	(B)	Mammal like form	
	(C)	Stream lined body	
	(D)	Armour on the body	
52.	The	Hipparian Faunas were characteristic of :	
	(A)	Eocene	
	(B)	Pliocene	
	(C)	Miocene	
	(D)	Triassic	
53.	Kai	mur and Cheyair group belongs to :	
	(A)	Delhi and Vindhyan supergroup	
	(B)	Cuddapah and Delhi supergroup	
	(C)	Vindhyan and Cuddapah supergroup	
	(D)	Cuddapah and Vindhyan supergroup	
54.		characteristic fossil of ammonites found in ri formation is :	
	(A)	Perisphinctes	
	(B)	Perisphinctes anceps	
	(C)	Macrocephalites macrocephalus	
	(D)	Peltoceras athleta	(
-55	In K	ashmir Muth-Quartzites are overlain by :	
	(A)	Agglomeratic slates	
	(B)	Fenestella shale	
-	(C)	Dogra slates	
	(D)	Syringothris limestone	

JJ-317-A

(C) Middle Miocene to Lower Pleistocene
(D) Lower Oligocene to Middle Pleistocene
57. The atmospheric window of UV-visible ranges from :

(A) 0.30 - 0.78 μm
(B) 0.30 - 0.60 μm
(C) 0.30 - 0.75 μm
(D) 0.30 - 0.85 μm

58. Due to presence of quartz and feldspar the granite occurs in a spectral region of :

(A) 9 - 11 μm
(B) 9 - 17 μm
(C) 9 - 18 μm
(D) 9 - 15 μm

56. The Siwalik rocks range in age from :

(B) Miocene to Pleistocene

(A) Lower Miocene to Middle Pliocene

- 59. Natural cycles of variation of solar radiation that reach Earth's surface at approximately 20,000, 40,000 and 100,000 years :
 (A) Milankovitch cycles
 (B) Gigantic cycles
 (C) Solar cycles
 (D) None of these

 60. Tsunamis are generated due to :

 (A) Storms
 - (B) Hurricanes
 - (C) Earthquakes
 - (D) Tornados

- 1. Miohippus is:
 - (A) Pleistocene horse
 - (B) Pliocene horse
 - (C) Miocene horse
 - (D) Oligocene horse
- Foraminifera belongs to :
 - (A) Protista
 - (B) Bryozoa
 - (C) Mollusca
 - (D) Gastropoda
- 3. First non-flowering plant was found in :
 - (A) Jurassic
 - (B) Cretaceous
 - (C) Permian
 - (D) Carboniferous
- Glossopteris is characteristic fossil of :
 - (A) Vindhyan supergroup
 - (B) Dharwar supergroup
 - (C) Cuddapah supergroup
 - (D) Gondwana supergroup
- 5. Majority of mineral crystallizes in :
 - (A) Monoclinic system
 - (B) Orthorhombic system
 - (C) Tetragonal system
 - (D) Cubic system
- 6. Galena has:
 - (A) 5-fold symmetry
 - (B) 2-fold symmetry
 - (C) 7-fold symmetry
 - (D) 4-fold symmetry
- 7. In triclinic system :
 - (A) All the axes are equal
 - (B) All the axes are unequal
 - (C) All the angles between the axes are equal
 - (D) Two axes are equal

HFO-849-B

- 8. The bravais lattice of sodium chloride structure is :
 - (A) Base centered cube
 - (B) Body centered cube
 - (C) Face centered cube
 - (D) All the above
- 9. Polarized light can be obtained by :
 - (A) By reflection
 - (B) By absorption
 - (C) All of the above
 - (D) None of the above
- 10. Which is an isotropic mineral?
 - (A) Gypsum
 - (B) Quartz
 - (C) Garnet
 - (D) None of the above
- 11. Which is a biaxial mineral?
 - (A) Orthoclase
 - (B) Rutile
 - (C) Vesuvianite
 - (D) Zircon
- The isometric system includes all those crystals in which:
 - (A) All the crystallographic axis are essentially equal in length
 - (B) Two crystallographic axis are equal in length and the third is longer
 - (C) All the crystallogrpahic axis are unequal in length
 - (D) None of the above
- 13. The loss of volatile substances from lava causes :
 - (A) A rapid decrease in viscosity
 - (B) A rapid increase in viscosity
 - (C) No change in viscosity
 - (D) None of the above
- Large crystals are embedded in fine-grained groundmass is typical feature of :
 - (A) Poikilitic Texture
 - (B) Porphyritic Texture
 - (C) Ophitic Texture
 - (D) Microgranular Texture
- 2

- 15. A volcanic equivalent of trachyte is :
 - (A) Dolerite
 - (B) Pegmatite
 - (C) Basalt
 - (D) Syenite
- 16. The chemically or biochemically precipitated rock is:
 - (A) Sandstone
 - (B) Rock salt
 - (C) Slate
 - (D) Limestone
- 17. The original minerals which have failed to react with 23. changed pressure, temperature conditions are known as :
 - (A) Index minerals
 - (B) Relict minerals
 - (C) Stress minerals
 - (D) All the above
- 18. Glaucophane is an index mineral of:
 - (A) Granulite Facies
 - (B) Eclogite Facies
 - (C) Zeolite Facies
 - (D) Blue-Schist Facies
- , 19. During emission of β particle :
 - (A) Mass number and atomic number remains same
 - (B) Mass number is increased by 2 but atomic number is increased by 4
 - (C) Mass number is increased by 4 but atomic number is increased by 2
 - (D) Mass number remains same but atomic number increases by 1
- 20. Identify the correct sequence of abundance of elements in the Earth :
 - (A) O > Si > K > Fe > Mg > Na > Al > Ca
 - (B) O > Si > Na > Fe > Ca > Al > K > Mg
 - (C) O > Si > Mg > Fe > Ca > Na > K > Al
 - (D) O > Si > Al > Fe > Ca > Na > K > Mg
- HFO-849-B

- 21. A mass of rock traversed by a network of small ore bearing veins :
 - (A) Saddle reefs
 - (B) Ladder veins
 - (C) Stockworks
 - (D) Gash veins
- The main producer of Lead and Zinc ores in India 22. is:
 - (A) Amba Mata deposits of Gujarat
 - (B) Sargipalli deposits of Orissa
 - (C) Agnigundala deposits of Andhra Pradesh
 - (D) Zawar belt of Rajasthan
 - The regions where mineral deposits of a specific type are found abundantly are called :
 - (A) Metallogenic epochs
 - (B) Metallogenic provinces
 - (C) Metallogenic eras
 - (D) None of the above
- 24. Placer deposits in which gravity is the agency occur along the hill slopes are called :
 - (A) Aeolian placers
 - (B) Alluvial placers
 - (C) Eluvial placers
 - (D) Deluvial placers
- 25. The calorific value of anthracite is :
 - (A) 15000 to 15600 B.T.U.
 - (B) 15000 to 15100 B.T.U.
 - (C) 15000 to 16000 B.T.U.
 - (D) 15000 to 15900 B.T.U.
- Which of the following is non coking constituent of 26. coal?
 - (A) Vitrain
 - (B) Clarain
 - (C) Durain
 - (D) All the above
- 27. About 98% of coal produced in India is found in :
 - (A) Cambrian age
 - (B) Silurian age
 - (C) Permo-carboniferous age
 - (D) Jurassic age

- 3 ..

- 28. The most common reservoir rocks are :
 - (A) Sandstone

1.

- (B) Granite
- (C) Gneiss
- (D) None of the above
- 29. In an aquifer the hydraulic conductivity varies :
 - (A) Vertically only
 - (B) Laterally only
 - (C) Neither laterally nor vertically
 - (D) Both vertically and laterally
- 30. Aquitards are :
 - (A) Saturated but impermeable formations
 - (B) Saturated and permeable formations
 - (C) Saturated but poorly permeable formations
 - (D) Massive and permeable formations
- 31. Recharge area is :
 - (A) A region supplying water to confined aquifer
 - (B) A region supplying water to unconfined aquifer
 - (C) A region supplying water to perched aquifer
 - (D) All of the above
- According to BIS the permissible limit of Arsenic in drinking water in absence of any alternate source is:
 - (A) 0.05 mg/L
 - (B) 1.07 mg/L
 - (C) 0.08 mg/L
 - (D) 1.05 mg/L
- The discontinuity between upper crust and lower 40. crust is known as :
 - (A) Gutenberg discontinuity
 - (B) Lehman discontinuity
 - (C) Conrad discontinuity
 - (D) Moho discontinuity
- 34. Low Velocity Zone is characterized by :
 - (A) High heat flow and high electrical conductivity
 - (B) High heat flow and low electrical conductivity
 - (C) Low heat flow and high electrical conductivity
 - (D) Low heat flow and low electrical conductivity
- HFO-849-B

- 35. Maximum velocity by seismic waves is attained in :
 - (A) Crust
 - (B) Upper Mantle
 - (C) Lower Mantle
 - (D) Inner Core
- A wave moves with an up-and down rolling motion like an ocean wave is called :
 - (A) Love wave
 - (B) Rayleigh wave
 - (C) Shear wave
 - (D) All of the above
- 37. A panchromatic image consists of :
 - (A) 36 bands
 - (B) One band
 - (C) 5 bands
 - (D) 2 bands
- Universal Transverse Mercator (UTM) divides the Earth into :
 - (A) 60 equal zones
 - (B) 120 equal zones
 - (C) 180 equal zones
 - (D) 360 equal zones
- A composite image or photograph made by piecing together individual images or photographs covering adjacent areas is known as :
 - (A) Image enhancement
 - (B) Geo-referencing
 - (C) Mosaic
 - (D) Parse
 - In electromagnetic spectrum the region from 0.7 to 1000 µm is called :
 - (A) Infrared waves
 - (B) Radio wave
 - (C) X-rays
 - (D) Visible light
- 41. The process of jumping, bouncing and drifting action of sand particles :
 - (A) Hydraulic action
 - (B) Saltation
 - (C) Siltation
 - (D) Solifluction

42	2. M	latch the following	and i	dentify the co	orrect	47	/ T	When streams diverse 6
	an	ISWer:		15 - 10 - 19 - 19 - 19 - 19 - 19 - 19 - 19				When streams diverge from a central area, like
	(a)) Pediments and inselbergs	(e)	Sedimentary	rocks		(4	spokes from the hub of a wheel, it is called : (A) Radial
	^{ch}		1122				- 88	B) Dendritic
	(b)		(f)	Abrasion	10.1			C) Parallel
	(c)		(g)	Deflation		48.		D) Trellis
	(d)	Mesas and Buttes	(h)	Crystalline roo	cks	40.	. C	Critical angle for partially jointed rocks vary from :
	(A)) (a)-(f), (b)-(g), (c)-	(h), (d				- 350	A) 45° to 67°
	(B)						(E (C	
	(C)						(C (D	
	(D)	(a)-(f), (b)-(h), (c)-((a) (d)-(c)		49.	1.38	All and a second s
43.	Far	th can be well underet	g), (u)-(e)		12.	du	he change in the shape or volume of a rock body ue to applied forces :
3778	(A)	th can be well understo	bod th	rough :			(A	
	(A)	Geological evider	ices ;	and Geophys	ical		(B)	
	-	exploration					(C	
	(B)	Only Geological evid	lences				(D)	
	(C)	Only Geophysical ex	plorati	ion		50.	100	ade of a fault is :
	(D)	None of the above				1000000) 90 + dip
44.	Whi	ch one of the followin	g elen	ients is the coo		115	(B)	
	mos	t abundant in the Earth	's cmi	ento 15 une sect	0110		(C)	
	(A)			5L 1			(D)	
	(B)	Sulphur			2	51.		e change in the shape of a rock body due to applied
x.	(C)	Silicon					stre	esses :
							(A)	Dilation
45	111000005510	Carbon					(B)	Hydrostatic stress
45.	Astre	amlined, wind-sculpte	d land	form found in a	rid		(C)	
	regio	n is called as :					(D)	Distortion
	(A)	Horn			5	2.	In a	region, where two continents collide, one
	(B)	Pedestal					com	thent may be forced beneath the other. The
	(C)	Yardangs				1	proc	cess is called :
	(D)	Ventifacts						Overthrusting
46.	126 T 10 Y	2752222323232322	1. 1	2			B)	Underthrusting
	is:	vel, which controls the o	lepth o	of stream erosio	n,		(C)	Thrusting
	enere en	11+i 1			60			None of the above
2.0		Ultimate base			53	82 <u>(</u>)		Crust is formed at the :
5	20. s.e.	Base level				- 02	A)	Constructive plate boundary
(ocal base level				- 28	B)	Destructive plate boundary
(D) A	all the above					C) (Conservative plate boundary
IIEO	0.40 -					(1	D)]	None of the above
HFO-	849–I	3			5			
					••			[Turn over

54. Which of the following features is associated with a 58. convergent plate boundary?

- (A) Earthquakes
- (B) Deep sea trench
- (C) All the above
- (D) None of the above
- 55. Vibrations radiate from focus in all directions as :
 - (A) Seismic waves
 - (B) Transverse waves
 - (C) Longitudinal waves
 - (D) None of the above
- 56. Hess's Sea-floor spreading was confirmed by

using:

- (A) Different fossils on continents
- (B) Geometric fit of continents
- (C) Apparent polar wander paths
- (D) Magnetic anomalies of the sea floor
- 57. Which of the following geological formations do not belong to the Dharwar Super Group?
 - (A) Charnockites
 - (B) Clsepet Granite
 - (C) Peninsular Gneiss
 - (D) Chair Formation

- The most common rocks of the Vindhyan Supergroup are :
 - (A) Granite
 - (B) Basalt
 - (C) Gneiss
 - (D) None of the above
- 59. The second largest time unit in the Geological time scale is:
 - (A) Period
 - (B) Eon
 - (C) Era
 - (D) Epoch
- 60. In the Karewas of Kashmir, Hirpur Formation contains three members, which one is correct sequence from top to bottom ?
 - (A) Methawoin Member; Rambiara Member, Dubjan Member
 - (B) Dubjan Member, Rambiara Member, Methawoin Member
 - (C) Methawoin Member, Dubjan Member, Rambiara Member
 - (D) All of the above

HFO-849-B

- 1. Trilobites belong to phylum :
 - (A) Arthropods

1 1 2 3

- (B) Brachiopods
- (C) Graptolites
- (D) Foraminifera
- 2. Clay and calcium carbonate nodules are found in which horizon of an ideal soil profile ?
 - (A) A horizon
 - (B) Bhorizon
 - (C) Chorizon
 - (D) Ohorizon
- 3. Evolution of horse dates back in which geological time period ?
 - (A) Cretaceous
 - (B) Eocene
 - (C) Devonian
 - (D) Pleistocene
- 4. In Orthorhombic crystal system the relative lengths and the orientation of the crystallographic axes are :
 - (A) $a = b = c; \infty \neq \beta \neq \gamma$
 - (B) $a = b = c; \ \infty = \beta = \gamma$
 - (C) $a \neq b \neq c; \infty = \beta = \gamma$
 - (D) $a = b = c; \ \infty = \beta \neq \gamma$
- 5. In albite law, commonly found in plagioclase, the twinning occurs perpendicular to which crystallographic axis?
 - (A) b-axis
 - (B) a-axis
 - (C) c-axis
 - (D) All of these
- 6. Which of the following is not the polymorph of quartz?
 - (A) Coesite
 - (B) Crystobalite
 - (C) Tridymite
 - (D) Andalusite

- 7. Which of the following is not a mineraloid?
 - (A) Limonite
 - (B) Allophane
 - (C) Wollastonite
 - (D) Volcanic glass
- 8. The Diopside-Hedenbergite series belongs to which mineral family?
 - (A) Ortho-pyroxenes
 - (B) Clino-pyroxenes
 - (C) Clino-amphiboles
 - (D) Ortho-amphiboles
- Which of the following statements is true?
 - (A) The refractive index is the ratio of ordinary and extraordinary ray
 - (B) The refractive index of the anisotropic minerals is not dependent on the direction of travel of the light
 - (C) The refractive index of the anisotropic minerals is dependent on the direction of travel of the light
 - (D) The mineral behaves similarly in both plane light and under crossed nicols

10. A black cross-shaped pattern seen in an interference figure is known as :

Engure that your Oh

- (A) Isogyre
- (B) Isomorph
- (C) Isopleth
- (D) Isochrome
- 11. A rock without quartz mineral is :
 - (A) Dacite
 - (B) Granite
 - (C) Rholite
 - (D) Basalt

FDM-2556-B

Which of the following is not silica under-saturated 17. Which of the following is not a Lithophile? 12. rock?

- (A) Nephlene
- (B) Andesite
- (C) Syenite
- (D) Sodalite
- 13. Very large intrusive igneous rock bodies with their. bases rarely exposed :
 - (A) Batholith
 - (B) Lopolith
 - (C) Laccolith
 - (D) Stock
- 14. Soft-sediment deformation structure comprising rounded masses of clastic sediment set in similar or finer-grained matrix :
 - (A) Diapir
 - (B) Slump
 - (C) Pseudonodule
 - (D) Ripple marks
- 15. A detrital sedimentary rock containing > 20 % feldspar:
 - (A) Grewacke
 - (B) Sandstone
 - (C) Arkose
 - (D) Quartz arenite
- 16. A metamorphic process in which the chemical composition of a rock is changed significantly as a result of fluid flow :
 - (A) Metasomatism
 - (B) Anataxis
 - (C) Diamorphism
 - (D) Migmatite

- - (A) Os, Ir, Pt
 - (B) Li, Na, K, Rb
 - (C) Si, Ti, Zr, Cs
 - (D) H, F, Cl, Sr
- 18. A metamorphic rock formed by the contact between mudstone/shale, or other clay-rich rock, and a hot igneous body:
 - (A) Greenschist
 - (B) Hornfels
 - (C) Eclogite
 - (D) Charnokite
- 19. Streak of pyrite is :
 - (A) White
 - (B) Green
 - (C) Greenish Black
 - (D) Yellow
- 20. Natural concentration of heavy minerals caused by the gravity separation during sedimentary processes :
 - (A) Hydrothermal deposits
 - (B) Vein deposits
 - (C) Evaporite deposits
 - (D) Placer Deposits
- Mineral Kyanite is formed as a result of : 21.
 - (A) Magmatism
 - (B) Metamorphism
 - (C) Diagenesis
 - (D) Recrystallization
- Which of the following is the obducted part of the 22. oceanic crust?
 - (A) Batholith
 - (B) Flysch
 - (C) Ophiolite
 - (D) Mollass

23. Which of the following metamorphic rocks is non 29. Darcy's law says : foliated?

- (A) Schist
- (B) Phyllite
- (C) Slate
- (D) Quartzite
- 24. Banded Iron Formation occur mostly in :
 - (A) Precambrian rocks
 - (B) Lower Paleozoic rocks
 - (C) Cretaceous rocks
 - (D) All of these
- 25. Which of the following is the best reservoir rock of 30. A portion of groundwater joining the stream flow is petroleum?
 - (A) Sedimentary rocks
 - (B) Igneous rocks
 - (C) Metamorphic rocks
 - (D) All of these
- 26. Most of the coal is found in :
 - (A) Achaean Formations
 - (B) Gondwana Formations
 - (C) Miocene Formations
 - (D) Quaternary Formations
- 27. Following are the dominant constituents of coal:
 - (A) C, H, N, Fe, S
 - (B) C, H, Fe, S, As
 - (C) C, H, N, S, O
 - (D) C, H, S, O, Au
- 28. Which of the following sedimentary basins in India are dominant producers of oil and gas?
 - (A) Cambay basin
 - (B) Assam shelf
 - (C) Krishna Godavari basin
 - (D) All of these

FDM-2556-B

- (A) The rate of groundwater flow is directly proportional to head loss and inversely proportional to hydraulic conductivity
- (B) The rate of groundwater flow is directly proportional to head loss and inversely proportional to distance of flow path
- (C) The rate of groundwater flow is directly proportional to hydraulic conductivity and inversely proportional to head loss
- (D) All of these
- called:
 - (A) Interflow
 - (B) Overflow
 - (C) Baseflow
 - (D) Channel flow
- 31. Which of the following statements is correct?
 - (A) Soil moisture is a part of groundwater
 - (B) Water table and piezometric surface are synonymous
 - (C) Groundwater is more than the river water
 - (D) The groundwater is recharged by glaciers only
- 32. The geophysical method not used for groundwater exploration:
 - (A) Seismic reflection method
 - (B) Seismic refraction method
 - (C) Resistivity method
 - (D) Gravity method
- 33. The inner core of the earth is :
 - (A) Ductile
 - (B) Semisolid
 - (C) Brittle
 - (D) Liquid

- 34. Most of the deep focus earthquakes are 40. The prediction of which of the following disasters is concentrated along :
 - (A) Subduction zones
 - (B) Mid oceanic ridges
 - (C) Platforms
 - (D) Shields
- 35. S-waves do not pass through :
 - (A) Crust
 - (B) Mantle
 - (C) Inner Core
 - (D) Outer Core
- 36. The velocity of body waves in the Earth :
 - (A) Decrease with the depth
 - (B) Decreases at LVZ
 - (C) Increase up to mantle and decrease in core
 - (D) Decrease up to mantle and increase in core
- In electromagnetic spectrum the region from 0.7 to 37. 1000 µm is called :
 - (A) Visible light
 - (B) UV light
 - (C) X-rays
 - (D) Infrared waves
- 38. Which of the following is(are) not naturally created greenhouse gas(es) with a strong impact on the climate of the earth?

Mid Oceanic Rid

- (A) CFCs
- (B) O,
- (C) H,
- (D) N,O
- Which of the following statements is false? 39.
 - (A) Landslides can cause seismic disturbances
 - (B) Landslides can result from seismic disturbance
 - (C) Landslides can result from flooding
 - (D) Landslides can result from tornadoes

- most difficult?
 - (A) Floods
 - **(B)** Earthquakes
 - (C) Tornadoes
 - (D) Cyclones
- Total area of the earth under land mass is : 41.
 - (A) 29.22%
 - (B) 16.14%
 - (C) 41.22%
 - (D) 18.41%
- 42. Long winding ridges of sand and gravel found in pre glaciated regions and originating within or beneath the ice, either from continuous deposition at the mouth of a subglacial stream as the ice retreated or from infilling of the tunnels of these streams before recession are known as :
 - (A) Drumlins
 - (B) Roches moutonees
 - (C) Eskers
 - (D) Chatter Marks
- 43. Hanging valleys are created by :
 - (A) Ice sheets
 - Mountain Glaciers (\mathbf{B})
 - (C) Landslides
 - (D) GLOF
- 44. The deepest parts of the ocean are generally found along the :
 - (A) Subduction zone
 - (B) Mid Oceanic Ridges
 - (C) Continental rise
 - (D) Abyssal Plain

FDM-2556-B

Turn over

- 45. Alteration and breakdown of minerals and rocks, 51. A low angle fault where the hanging wall has potential when they are exposed to the atmosphere is called :
 - (A) Scree
 - (B) Regolith
 - (C) Weathering
 - (D) Erosion
- 46. Which of the following is the characteristic feature of aeolian erosion?
 - (A) Driekantars
 - (B) Ventifacts
 - (C) Yardangs
 - (D) All of these
- 47. Landscapes which are produced by the dissolution of carbonate rocks by water :
 - (A) Terrarosa
 - (B) Point bars
 - (C) Levees
 - (D) Morains
- 48. Which of the following is/are the typical identification feature(s) of a fault?
 - (A) Mylonite
 - (B) Gouge
 - (C) Slickenslide
 - (D) All of these
- 49. The slow downhill movement of soil as a result of the alternate freezing and thawing of the contained water:
 - (A) Creep
 - (B) Debris flow
 - (C) Solifluction
 - (D) Avalanche
- 50. A line joining points of same altitude with respect to mean sea level or a datum plane is :
 - (A) Isobath
 - (B) Contour
 - (C) Isopleth
 - (D) Isograd

. . .

FDM-2556-B

- to transport longer distances with respect to footwall is called :
 - (A) Sinistral strike slip Fault
 - (B) Dextral strike slip Fault
 - (C) Thrust Fault
 - (D) Reverse Fault
- 52. Which of the following statements is true?
 - (A) Maximum stretch is perpendicular to minimum stress direction
 - (B) Maximum stretch is perpendicular to maximum stress direction
 - (C) Maximum stretch is perpendicular to intermediate stress direction
 - (D) Minimum stretch is parallel to minimum stress direction
- 53. The continental slope is made up of:
 - (A) Oceanic crust
 - (B) Peridotites
 - (C) Eclogites
 - (D) Continental crust
- 54. As per the concept of sea floor spreading the new crust is generated at :
 - (A) Mid Oceanic Ridges
 - (B) Subduction zones
 - (C) Strike slip boundaries
 - (D) All of these
- 55. Which of the following is the strongest evidence of continental drift?
 - (A) Jigsaw fit
 - (B) Geological fit
 - (C) Fossil evidence
 - (D) All of these
- 6 **

56. Which of the following is correct in Geological Time 59. Papaghani and Cheyair series constitute the : Scale?

- (A) Era>Eon>Epoch
- (B) Eon>Era>Epoch
- (C) Epoch>Era>Eon
- (D) Eon>Epoch>Era
- 57. The lowest and uppermost Member/Formation of 60. the Karewas are :
 - (A) Dubjan and Pampur
 - (B) Dubjan and Methowian
 - (C) Dubjan and Dilpur
 - (D) Pampur and Dilpur
- 58. Age of Upper Siwaliks is :

- (A) Pleistocene to Pliocene
- (B) Pleistocene to Lower Miocene
- (C) Pliocene to Lower Miocene
- (D) Lower Miocene to Oligocene

- - (A) Upper Cuddapah
 - (B) Upper Vindhyan
 - (C) Lower Cuddapah
 - (D) Lower Vindhyan

Stegodon Clifti and Stegodon Insignis found in the Upper Siwaliks are fossils of:

- (A) Fish
- (B) Elephant
- (C) Primates
- (D) Birds

S	SCHOOL OF EARTH & ENV	Sr. N6. <u>197</u> TEST-2017 TRONMENTAL SCIENCES GEOLOGY	
	Questions : 60 Allowed : 70 Minutes	Question Booklet Series	
- 03	Instructions for Write your Roll Number in the space provided at necessary information in the spaces provided on th	the top of this page of Question Booklet and fill up e OMR Answer Sheet.	
2.	entries in the Original Copy, candidate should ens entries made in the Original Copy against each iten		
3.	All entries in the OMR Answer Sheet, including ans only.	wers to questions, are to be recorded in the Original (Сору
4.	Choose the correct / most appropriate response for darken the circle of the appropriate response com- read by the OMR Scanner and no complaint to this	or each question among the options A, B, C and D pletely. The incomplete darkened circle is not corre effect shall be entertained.	and ectly
5.	Use only blue/black ball point pen to darken the gel/ink pen or pencil should be used.	circle of correct/most appropriate response. In no	case
6.	Do not darken more than one circle of options for response shall be considered wrong.	any question. A question with more than one dark	ened
7.	There will be 'Negative Marking' for wrong ans 0.25 marks from the total score of the candidate.	wers. Each wrong answer will lead to the deduction	on of
8.	Only those candidates who would obtain positive admission.	score in Entrance Test Examination shall be eligible	le for
9.	Do not make any stray mark on the OMR sheet.	(E) Mass washing to an addition (C)	
10	. Calculators and mobiles shall not be permitted insid	le the examination hall.	. Arie
	. Rough work, if any, should be done on the blank sl		
	2. OMR Answer sheet must be handled carefully and i be evaluated.		ill not
13	B. Ensure that your OMR Answer Sheet has been sign	ned by the Invigilator and the candidate himself/hers	elf.
14	4. At the end of the examination, hand over the OMR original OMR sheet in presence of the Candidate	Answer Sheet to the invigilator who will first tear o and hand over the Candidate's Copy to the candida	off the te.
DAT	11117–A	[Turn	1 ovei

1.4

SEAL

Mass movement of water saturated soils in high-7. How much is the total land area of the earth? 1. altitudes due to alternate freezing and thawing: 19.4% (A) Avalanche (A) 39.1% (B) Mud flow (B) 49.2% (C) Creep (C) 29.2% (D) Solifluction (D) Two most dominant chemical elements in Bulk Earth 2. A step like feature on the surface of the earth caused 8. are by slip on the fault: O and Si (A) (A) Cuesta Si and Fe (B) Fault scarp (B) (C) O and Fe (C) Hogback Ca and Mg (D) (D) Lapis The process of determining numerical ages and dates 3. The strike of a sedimentary bed is measured in: 9. for Earth materials and events is known as: Horizontal plane (A) Geochemistry (A) Vertical and Horizontal plane (B) Geochronology (B) Vertical plane (C) Sedimentology (C) Inclined plane (D) (D) Gemmology The change in the shape of a rock body due to applied Submerged flat topped volanic peaks are known as: 10.4. stresses Guyots (A) Dilation (A) Seamounts (B) Hydrostatic stress (B) Abyssal (C) Distortion (C) Ocean ridges (D) Co-axial stress (D) The downslope movement of rock, regolith, and soil 5. A depression bounded by normal faults: under the direct influence of gravity is called Canyon Weathering (A) (B) Horst Mass wasting (B) Wrench (C) Rockfall (C)Graben (D) Debris fall (D) Which of the following is used as an evidence of 6. A circular depression found mostly in karst areas with 12. a few meters to hundreds of meters in size is known faulting? Boudins (A) as Mylonite (B) (A) Sinkhole Sausage (C) Shaft (B) (D) Foliation Terra Rosa (C)Kerren field (D)

DAJ-11117-A

- 13. The ocean trenches are formed at
 - (A) Mid Oceanic Ridge
 - (B) Seamounts
 - (C) Subduction Zones
 - (D) Oceanic Islands
 - 14. The plate boundary where oceanic crust is neither created nor destroyed
 - (A) Mid oceanic ridge
 - (B) Strike-slip fault
 - (C) Subduction zones
 - (D) All of these
- 15. Aleutian type orogenic belt is created at the convergence of which plate boundaries?
 - (A) Oceanic-Oceanic
 - (B) Oceanic-continental
 - (C) Continental-continental
 - (D) All of these
- 16. Which of the following statement is not correct?
 - (A) Himalayas are formed due to continentcontinent collision
 - (B) Continents crust is lighter than oceanic crust
 - (C) Lithosphere is more brittle than asthenosphere
 - (D) Mantle is liquid
- 17. Which of the following is the largest unit of geological time period?
 - (A) Epoch
 - (B) Period
 - (C) Eon
 - (D) Era
- 18. The age of Siwaliks is:
 - (A) Tertiary
 - (B) Quaternary
 - (C) Mesozoic
 - (D) Permo-carboniferous

- 19. Which of the following geological formations do not belong to the Dharwar Super Group?
 - (A) Charnockites
 - (B) Clsepet Granite
 - (C) Peninsular Gneiss
 - (D) Chair Formation
- 20. In which of the following geological formations, the Coal is found in Kashmir?
 - (A) Karewas
 - (B) Triassic Limestone
 - (C) Syringothyris Limestone
 - (D) Fenestella Shale
- 21. Vertebrate fossils are found in geological formation of time period
 - (A) Permian
 - (B) Devonian
 - (C) Siwaliks
 - (D) Archaen
- 22. Trilobites became extinct in which geological period?
 - (A) Permian
 - (B) Miocene
 - (C) Eocene
 - (D) Oligocene
- 23. Life appeared on the surface of Earth
 - (A) 1 million years BP
 - (B) 1 billion years BP
 - (C) 2 million years BP
 - (D) 2 billion years BP
- 24. Which of the following evidences does not favour the theory of continental drift?
 - (A) Jigsaw fit of eastern South America and West Africa
 - (B) Continuous geology of eastern South America and West Africa
 - (C) Continuity of fossils across these continents

[Turn over

(D) Continuity of ocean basins

DAJ-11117-A

25.	Polysynthetic	twinning is	commonly	found in
-----	---------------	-------------	----------	----------

- (A) Olivine
- (B) Kyanite
- (C) Wollastonite
- (D) Plagioclase
- 26. Which of the following mineral does not show polymorphism?
 - (A) Carbon
 - (B) Al,SiO
 - (C) $ZrSiO_4$
 - (D) SiO,
- 27. Which of the following mechanisms result in pseudomorphism?
 - (A) Substitution
 - (B) Encrustation
 - (C) Alteration
 - (D) All of these
- 28. In triclinic system
 - (A) All the axes are equal
 - (B) All the axes are unequal
 - (C) All the angles between the axes are equal
 - (D) Two axes are equal
- 29. Augite is a member of
 - (A) Garnet family
 - (B) Mica family
 - (C) Pyroxene family
 - (D) Olivine family
- 30. In Moh's scale the hardness of quartz is:
 - (A) 7
 - (B) 5
 - (C) 6
 - (D) 8

- With analyzer inserted, the mineral grain of any orientation remains extinct or dark during complete 360° rotation of the microscopic stage:
 - (A) Anisotropic
 - (B) Uniaxial
 - (C) Isotropic
 - (D) Biaxial
- 32. Concoidal fracture is commonly exhibited by
 - (A) Calcite
 - (B) Quartz
 - (C) Kyanite
 - (D) Olivine
- 33. Which of the following minerals is not found in Granite?
 - (A) K-feldspar
 - (B) Quartz
 - (C) Biotite
 - (D) Olivine
- 34. Soft-sediment deformation structure internally folded into broader synclines and sharp anticlines with lower and upper contacts planer:
 - (A) Ball and Pillow structures
 - (B) Convolute bedding
 - (C) Pseudonodule
 - (D) Cross bedding
- 35. A detrital sedimentary rock containing >20% feldspar
 - (A) Grewacke
 - (B) Sandstone
 - (C) Arkose
 - (D) Quartz arenite
- 36. Which of the following is not an intrusive rock?
 - (A) Basalt
 - (B) Granite
 - (C) Peridotite
 - (D) Diorite

DAJ-11117-A

- 37. The most abundant element in the Earth's Core is:
 - (A) Ni
 - (B) O
 - (C) Si
 - (D) Fe
- 38. The hornfels and granulite rocks are formed due to:
 - (A) Metamorphism with Low T and P
 - (B) Metamorphism with Low T and high P
 - (C) Contact metamorphism
 - (D) Metamorphism with high T and P
- 39. Based on the chemical affinity of the elements in the earth, the elements concentrated in the sulphide phase are:
 - (A) Siderophile
 - (B) Chalcophile
 - (C) Lithophile
 - (D) Atmophile
- 40. Which of the following is a typical metamorphic mineral?
 - (A) Kyanite
 - (B) Olivine
 - (C) Smectite
 - (D) Montmorillonite
- 41. Natural accumulation of valuable minerals caused by the gravity separation during sedimentary processes
 - (A) Hydrothermal deposits
 - (B) Vein deposits
 - (C) Evaporite deposits
 - (D) Placer deposits
- 42. Mangenese nodules are found in
 - (A) Upper continental crust
 - (B) Sea bed
 - (C) Ophiolites
 - (D) Mollass

DAJ-11117-A

- 43. Which of the following is the largest producer of mica in the world?
 - (A) Pakistan
 - (B) India
 - (C) China

45.

- (D) England
- 44. Most of the major iron deposits occur in Banded Iron Formation which were originally deposited in:
 - (A) Precambrian period
 - (B) Lower Paleozoic Period
 - (C) Cretaceous Period
 - (D) Tertiary Period
 - Which of the following statement is correct?
 - (A) Hydrocarbons are found in igneous rocks
 - (B) Petroleum and gas are always found in association with water
 - (C) Most of the source rocks of petroleum are calcareous, dolomitic, siliceous or phosphatic shales or argillaceous limestones
 - (D) Sandstones are very good trap rocks
- 46. The correct order of degree of alteration and maturation of coal is:
 - (A) Lignite > bituminous > peat > anthracite
 - (B) Peat > lignite > bituminous > Anthracite
 - (C) Peat > bituminous > lignite > anthracite
 - (D) Peat > lignite > anthracite > bituminous
- 47. Anthracite has:
 - (A) Higher C and lower moisture
 - (B) Higher C and high moisture
 - (C) Lower carbon and low moisture
 - (D) Lower C and higher moisture
- 48. Which of the following sedimentary basins in India are dominant producers of oil and gas?
 - (A) Cambay basin
 - (B) Assam shelf
 - (C) Krishna Godavari basin
 - (D) All of these

- 49. The highest reservoir of fresh water on the Earth:
 - (A) Lakes
 - (B) Streams
 - (C) Groundwater
 - (D) Oceans
- 50. The permeability is high in:
 - (A) Sandstone
 - (B) Granite
 - (C) Basalt
 - (D) Claystone
- 51. The water trapped in the sedimentary formations, which remain cut off from the active hydrological cycle:

 - (A) Soil moisture
 - (B) Juvenile water
 - (C) Groundwater
 - (D) Connate water
- 52. Which of the following statements is not correct?
 - (A) Fresh groundwater occurs in geological formations with high hydraulic conductivity
 - (B) Water table is the saturated surface in unconfined aquifer
 - (C) Hydrological cycle is stimulated by the internal heat of the earth
 - (D) The height of the piezometric surface is also due to hydrostatic pressure
- 53. The average geothermal gradient near the surface of the earth is
 - (A) $5^{\circ}/\text{km}$ depth
 - (B) 25°/km depth
 - (C) 15°/km depth
 - (D) 35°/km depth
- 54. The deep focus earthquakes mostly occur at:
 - (A) Subduction zones
 - (B) Shields
 - (C) Oceanic ridges
 - (D) Ocean floor

DAJ-11117-A

- 55. According to Airy's theory of isostacy:
 - (A) Mountains have roots and ocean basins have antiroots
 - (B) Topography is produced due to the varying density of crustal blocks
 - (C) Depth of crustal blocks terminate at uniform level
 - (D) All of these
- 56. The core-mantle boundary, which marks the termination of shear waves, is known as:
 - (A) Conrad discontinuity
 - (B) Lehman discontinuity
 - (C) Mohorovicic discontinuity
 - (D) Gutenberg discontinuity
- 57. Which of the following is not a satellite sensor?
 - (A) ERDAS
 - (B) LANDSAT
 - (C) ASTER
 - (D) MODIS
- 58. The dominant greenhouse gas in the earth's atmosphere
 - (A) CH

is

- (B) N₂O
- (C) CO,
 -)) CFC
- (D) CFC
- 59. Which of the following is a volcanic hazard?
 - (A) Crevasse
 - (B) Solifluction
 - (C) Tephra
 - (D) Rockfall
- 60. Tsunamis are generated due to:
 - (A) Storms
 - (B) Earthquakes
 - (C) Tornados
 - (D) Cyclones

6 •

cgotó	pplied Ge				Sr. No
		J	ENTR	ANCE	TEST-2016
	FA	ACUL	TY OF PH	HYSICAL &	MATERIAL SCIENCE
			M.Sc.	APPLIED	GEOLOGY modulus and a select
Total (Questions	: 60		pedocals	Question Booklet Series
	llowed	: 70	Minutes	e of a slope live removal of sol	Roll No. :
1.	Write your R necessary inf	Roll Num formatior	ber in the spa	astructions for Ca ace provided at the provided on the O	ndidates : top of this page of Question Booklet and fill up the MR Answer Sheet.
2.	OMR Answe entries in the entries made	er Sheet h Origina in the Or	as an Original l Copy, candi iginal Copy a	Copy and a Candi date should ensure gainst each item ar	date's Copy glued beneath it at the top. While making that the two copies are aligned properly so that the e exactly copied in the Candidate's Copy.
3.	All entries in only.	the OMR	Answer Shee	et, including answe	rs to questions, are to be recorded in the Original Copy
4.	Choose the c darken the ci read by the C	correct / n ircle of th MR Scar	nost appropriate e appropriate mer and no co	iate response for e response complet omplaint to this eff	ach question among the options A, B, C and D and ely. The incomplete darkened circle is not correctly ect shall be entertained.
5.	Use only blu gel/ink pen o	ie/black l or pencil s	ball point pen hould be used	to darken the circ	le of correct/most appropriate response. In no case
6.	Do not darke response sha	en more t ll be cons	han one circle idered wrong	e of options for any	v question. A question with more than one darkened
7.	There will b 0.25 marks f	e 'Negati rom the t	ve Marking' otal score of t	for wrong answer he candidate.	s. Each wrong answer will lead to the deduction of
8.	Only those ca admission.	andidates	s who would c	obtain positive Sec	re in Entrance Test Examination shall be eligible for
9.	Do not make	e any stra	y mark on the	OMR sheet.	
10.	Calculators a	ind mobil	es shall not be	permitted inside th	e examination hall.
11.	Rough work	, if any, sl	nould be done	on the blank sheet	s provided with the question booklet.
12.	OMR Answe be evaluated		ust be handled	l carefully and it sho	ould not be folded or mutilated in which case it will not
13.	. Ensure that y	our OMI	R Answer She	et has been signed	by the Invigilator and the candidate himself/herself.
14.	At the end of original OM	the exan R sheet in	nination, hand	over the OMR An the Candidate and	swer Sheet to the invigilator who will first tear off the hand over the Candidate's Copy to the candidate.
CWG-	-33091–A			1	[Turn over

M.Sc. Applied Geology/A

- 1. Seismic waves arrive in the following order :
 - (A) P, S, Surface (B) P, Surface, S
 - (C) S, Surface P
- (D) S, P, Surface
- 2. Talus is an accumulation of :
 - (A) calcium carbonate in horizon B of pedocals
 - (B) angular rock fragments at the base of a slope
 - (C) valuable minerals formed by selective removal of soluble substances
 - (D) debris produced mostly by the activities of organisms
- 3. The dry lake beds in many deserts are :
 - (A) playas(B) pediments(C) bajadas(D) mesas
- 4. The process of identifying one rock layer with another one far away is called :
 - (A) correlation (B) connection
 - (C) correspondence (D) collation
- 5. In meandering rivers, the point bars occur at the :
 - (A) inside bends of a river channel
 - (B) outside bends of a river channel
 - (C) both inside and outside bends of a river channel
 - (D) middle of the river
- 6. Which of the following is an example of deposition by groundwater?
 - (A) caves (B) stalactites
 - (C) caverns (D) sink holes
- 7. An element whose major ore is a type of soil :
 - (A) iron (B) zinc
 - (C) aluminum (D)
- CWG-33091-A

uranium

- 8. Match the following :
 - 1. initial stage
 - 2. youth stage
 - 3. mature stage
 - 4. old stage
 - (A) 1-i, 2-ii, 3-iii, 4-iv
 - (B) 1-ii, 2-i, 3-iv, 4-iii
 - 1-iv, 2-iii, 3-ii, 4-i (C)
 - (D) 1-iii, 2-ii, 3-i, 4-iv
- 9. The strike of a rock layer is :
 - the hardness relative to other rocks layers (A)
 - the compass direction of a line formed by the intersection of an inclined (B) plane and a horizontal plane
 - the angle at which the layer intercepts a horizontal plane (C)
 - the angle at which the layer plunges into the axis of a fold (D)
- 10. Foliation is:
 - unrelated to folds (A)
 - (B) cuts across folds
 - (C) tends to parallel the axial planes of folds
 - none of the above (D)
- 11. How do normal and reverse faults differ?
 - normal faults are caused by extension of the crust, reverse faults by (A) compression
 - reverse faults are caused by extension of the crust, normal faults by **(B)** compression

3*

[Turn over

- reverse faults are left-lateral, normal faults are right-lateral (C)
- (D) reverse faults are right-lateral, normal faults are left-lateral

An overturned fold is one in which : 12.

- both limbs dip in the same direction (A)
- the axial plain is vertical **(B)**
- the axis is inclined (C)
- the strata in one limb are horizontal (D)

CWG-33091-A

V-shaped valley

alluvial fans

Orogenies (mountain-building) are connect

iii. pot holes

i.

ii.

flood-plains ` iv.

- 13. Orogenies (mountain-building) are connected with :
 - (A) transforms faults (B) mid-ocean ridges
 - (C) subduction zones
- (D) ocean basins
- 14. According to plate tectonics, the San Andreas Fault is :
 - (A) an obduction zone (B) a subduction zone
 - (C) a transform plate boundary (D) none of these
- 15. The driving mechanism of plate movement is believed to be :
 - (A) rotation of the earth (B) magnetism
 - (C) tidal effects (D) thermal convection
- 16. The oceanic crust :
 - (A) is the same age throughout a given ocean basin
 - (B) ranges in age from Paleozoic to Mesozoic
 - (C) becomes progressively older toward the mid-ocean ridges
 - (D) becomes progressively younger toward the mid-ocean ridges
- 17. Two rock units which are located in different areas are probably related, if the fossils that they contain are :
 - (A) members of the same fossil assemblage
 - (B) members of two different fossil assemblages
 - (C) members of fossil groups having two different ages
 - (D) none of these
- 18. The group which does not show a correct sequence of the geologic column is :
 - (A) Paleocene, Eocene, Oligocene
 - (B) Devonian, Ordovician, Silurian
 - (C) Paleozoic, Mesozoic, Cenozoic
 - (D) Triassic, Jurassic, Cretaceous
- 19. Which fundamental geological principle states that the oldest layer is on the bottom of a vertical succession of sedimentary rocks and the youngest is on top ?
 - (A) lateral continuity
- (B) superposition

4

*

(C) fossil succession (D) original horizontality

CWG-33091-A

20.	In Vindh	yan System gypsum beds a	are associated	with : To yothey		
	(A)	Semri Series	(B)	Kaimur Series		
	(C)	Rewa Series	(D)	Bhander Series		
21.	The Fora	aminifers that live on the se	ea-buttons are o	called as :		
	(A)	benthonic Foraminifers	(B)	planktonic Foramin	ifers	
	(C)	dwarfForaminifers	(D) chombic	none of these		
22.	Geologi	cal age of <u>Terebratulla</u> Br	rachiopoda is :	o system is :		
	(A)	Ordovician to Silurian	(B)	Silurian to Permian		
	(C)	Eocene to Pliocene	(D)	Triassic to Jurassic		
23.	In some	genera of Gastropods, the	inner sides of	f the successive who	orls are fused	
		in the form of a solid pillar				
	(A)	Apical	(B)			
	(C)	Umbilicus	(D)	Columella		
24.	Arca is a	an example of :				
	(A)	Heterodont Lamellibrach	ia (B)	Isodont Lamellibra	chia	
	(C)	Dysodont Lamellibrachia		Taxodont Lamellib		
25.	Mark th	e correct statement regardi				
23.	(A)	all same light velocity in a				
	(B)	wave surface is sphere				
	(C)	wave form is circle				
	(D)	all the above are correct				
	(2)					
26.	Which	crystal systems are optically	uniaxial?			
20.	(A)	Hexagonal and Monoclin		Monoclinic and Te	tragonal	
	(C)	Hexagonal and Tetragon		Cubic and Orthorh	ombic and the data	
	. ,					
27.	Quartz	mineral belongs to :				
	(A)	Sorosilicates	(B)	Inosilicates		
	(C)	Cyclosilicates	(D)	Tectosilicates	ich of these environments	
	. ,					

CWG-33091-A

5*

28.	Sapphire	is a blue transparent vari	iety of :				
	(A)	Diamond	(B)	Quartz	Semi Series		
	(C)	Topaz	20102 rol (D)	Corundum			
29.	Graphite	crystallizes in :					
	(A)	Tetragonal system		Hexagonal system			
	(C)	Cubic system	2001 (D)	Orthorhombic system	n atimmero Etmorb		
30.	The norm	nal class of monoclinic sy	stem is :				
	(A)	Barite type	(B)	Beryl type			
	(C)	Gypsum type	(D)	Axinite type			
31.	'Schiller	ization' is characteristic of	the successive		enera of Gastropo		re.
51.	(A)	Diopside		Hypersthene			
	(C)	Enstatite	(D)	Hedenbergite	Adical		
	(0)	LABade	Columella				
32.	Andalusi	ite and Sillimanite crystalli	zes in :				
	(A)	Monoclinic system	(B)	Triclinic system			
	(C)		(D)	Hexagonal system			
33.	What co	arse-grained plutonic rock	consists of abu				
55.	and olivi			igarding 'isotropic' a			
	(A)	Syenite	(B)				
	(C)	Peridotite	. (D)	~			
34.	The mos	st abundant sedimentary r	ock found in the	Earth's crust is :			
	(A)	Shale	(B)	Sandstone			
	(C)	Limestone	(D)	None of the above			
			Monoclinic and				
35.	Which o	f the following pairs of ig	neous rocks hav	ve the same mineral co	mposition?		
	(A)	Granite-Diorite	(B)	Basalt-Gabbro			
	(C)	Andesite – Rhyolite	(D)	Peridotite-Granodi	iorite		
						(A)	
36.	Which o	of these environments can	n produce cross				
	. (A)	sand dunes	(B)	river deltas			
	(C)	alluvial fans	(D)	all the above			
CW	G-33091	- A		6			

*

77	TTT+ +1	1.	C' ' '	
11.	What is the correct metamor	mhic sequence	of increasingly	I coarcer arain cize '
	i natio die concet metamoi	prine bequeriee	or moreasingly	coalsel grant size :

- (A) phyllite => slate => gneiss => schist
- (B) slate => phyllite => schist => gneiss
- (C) gneiss => phyllite => slate => schist
- (D) schist => gneiss = phyllite => slate

38. Which type of metamorphism produces the majority of metamorphic rocks?

- (A) contact metamorphism (B) dynamic metamorphism
- (C) lithostatic metamorphism (D) regional metamorphism

39. To which of the following groups do most minerals in the earth's crust belong?

(A)	oxides	(B)	halides	

- (C) carbonates (D) silicates
- 40. Phase rule can be expressed as :

(A)	$\mathbf{F} = \mathbf{C} + \mathbf{P} - 2$	(B)	$\mathbf{F} = \mathbf{C} - \mathbf{P} + 2$
(C)	C = P + F - 2	(D)	$\mathbf{F} = \mathbf{C} - \mathbf{P} - 2$

41. Banded Iron Formation (BIF) of Kudremukh (Karnataka) belongs to :

(A) Sager Group(B) Bababudan Group(C) Chitradurga Group(D) Ranibonnur Group

42. Chromite deposits are product of segregation during :

- (A) early magmatic crystallization
 - residual liquid segregation (D) con
- (B) late magmatic crystallization
 - (D) contact metasomatism

43. Match the following:

(C)

1. i. white streak Hematite 2. Chalcopyrite ii. black streak 3. iii. greenish-black streak Pyrite 4. cherry-red streak Siderite iv. 1-ii, 2-iii, 3-iv, 4-i **(B)** 1-iv, 2-iii, 3-ii, 4-i (A) (C) 1-iii, 2-i, 3-ii, 4-iv (D) 1-i, 2-ii, 3-iii, 4-iv

CWG-33091-A

44.	Which st	ate is the largest producer of blac	ck mica	?		A nat is
	(A)	Bihar	(B)	Odisha		
	(C)	Madhya Pradesh	(D)	Maharashtra	State = > phythic = >	
45	Proximat	te analysis of coal determines :		Dort	ilos	(D) (D)
10	(A)	moisture content and volatile co	ontent	KOVE	1 1 1.01	
17	(B)	ash percentage		U a	. Labor VS	Which the
7	(C)	fixed carbon and heating value		Non Sol	song D	A
	(D)	all of the above		(D) 1	повлюри	-(C)
46.	Lignite d	eposit of Kashmir Valley is assoc	ciated wi	ith :		
	(A)	Muree Group		Siwalik Group		
	(C)	Karewa Group	(D)	None of the above	e · zobixo	
47.	The con	ditions necessary for the formation	onofan	oil pool are :		
47.	(A)	migration and accumulation	(B)	suitable reservoir	and cap rocks	
	(A) (C)	suitable traps and retention	(D)	all of the above	le can be expressed as	
	(C)	Surapie naps and recention	-) -)			
48.	Sourcer	ock in the Bombay High oil field	is:	- 10 ·		
40.	(A)	Limestone	(B)	Sandstone		
	(C)	Shale	(D)	Clay		
						(BORNER)
49.	Zone of	Saturation is also known as.				
	(A)	Vadose zone				
	(C)	Phreatic zone	(D)	Aeration zone		
50.	Permeal	bility of a material is a measure o	f:			
201	(A)	voids available in the material				
	(B)	voids and solid particles availa	ble in th	e material		
	· (C)	its capacity to transmit water th	rough it	ts interstices		
	(D)	its capacity to retain water in the	he mater	ial		
		zako				
51.	Darcy's	lawis:			Chalcopyrite	
	(A)	The discharge is inversely pro	portiona	al to head loss		
	(B)	The discharge is inversely prop	ortional	to head loss and dire	ctly proportional	
	(D)	to the length				
	(C)		rtional to	head loss and inver	sely proportional	
	(C)	to area of flow and to the leng				
	-		nortion	al to head loss and	area of flow and	
	(D)					
		inversely proportional to the l	ength of	the path		
				0		

-

CWG-33091-A

8 *

5			ysical method, which is most ap) (IISCINAL QUE IS 15		
		water is :	int, channel shape and		chainel width, depth, such			
		(A)	electrical resistivity method	(B)	seismic refraction method			
		(C)	seismic reflection method	(D)	gravity method			
				per unit	water passing a fixed point			
5	3.	Approxi	mate thickness of lithosphere ra	nges betv	veen :			
		(A)	1-2 km	(B)	5-10 km			
		(C)	50-100 km	(D)	100-200 km			
					i opened by an carthquaka			
5.	4. 1	The scale	e for measuring earthquake inter	nsity is :	a tectonic plate where carth			
		(A)	Mercalli scale	(B)	Richter scale			
		(C)	Moh's scale	(D)	Wentworth's scale			
5	5.	The deep	best earthquakes are found in wh	nich of the	e following tectonic location	ns?		
		(A)	mid-oceanic ridge	(B)	subduction zone			
		(C)	mountain range	(D)	deep ocean			
5	6.	The asthe	enosphere :					
		(A)	lies beneath the lithosphere					
		(B)	is composed primarily of Peric	lotite				
		(C)	behaves plastically and flows s					
		(D)	all of these					
5	7.	The arran	ngement of terrain features whic	ch provide	es attributes : the shape and s	size of		
			is called :					
		(A)	spectral variation	(B)	spatial variation			
•		(C)	temporal variation	(D)	none of these			
5	8. 1	Remote	sensing techniques are being us	efully em	ployed for the purpose of :			
		(A)	natural resource management					
		(B)	land use		X.			
		(C)	protection of the environment					
		(D)	all of these					
		. ,						
(CWC	G-33091	- A		9	[Turn o	ver	

- 59. A stream discharge is :
 - (A) influenced by channel width, depth, stream gradient, channel shape and channel roughness
 - (B) the product of a stream's velocity and channel cross-sectional area
 - (C) the volume of water passing a fixed point per unit time
 - (D) all of these

60. A seismic gap is :

- (A) a large chasm opened by an earthquake
- (B) the center of a tectonic plate where earthquakes rarely occur
- (C) a segment of an active fault where earthquakes have not occurred for a long time
- (D) the time between large earthquakes

CWG-33091-A

M.Sc. Applied Geology

				Mi.Se. A
1.	Flat-topp	bed seamounts are known a	s :	
	(A)	Submarine volcanoes	(B)	Guyots
	(C)	Groynes	(D)	Terraces
2.	Stromate	olites are :		
	(A)	Green algae	(B)	Organo-sedimentary structures
	(C)	Blue algae	(D)	Sedimentary structure
3.	The ave	rage gravitational force of	the earth is	
	(A)	98 cm/s ²	(B)	980 cm/s ²
	(C)	9800 cm/s²	(D)	980 cm/s
				•
4.	Exfoliati	on is a form of :		
	(A)	Chemical weathering	(B)	Biological weathering
	(C)	Biochemical weathering	(D)	Physical weathering
5.	Coral re	efs are generally found in the		
	(A)	20°N – 20°S		30°N - 30°S
	(C)	$60^{\circ}N - 60^{\circ}S$	(D)	45°N – 45°S
r	0.1.2	which and alors and human	are found my	ore or less in equal proportions are
6.		which sand, clay and hume		ne or ress in equal proportions are
	called :			D
	(A)	Loamy soils	(B)	Regur
	(C)	Chemozem	(D)	Pedalfar

2015

7. Flat-topped hills or small mountains formed by stream action are called :

t .

- (A) Mesas (B) Buttes
- (C) Cuestas (D) Stream terraces

CNW-25336--A

- 8. 'Natural levee' is an example of :
 - (A) Point-bar deposits
 - (C) Flood plain deposits
- (B) Channel-fill deposits
- (D) Flood basin deposits
- 9. The clinometers compass can be used to find the structural trend of rocks containing the minerals :
 - (A) Magnetite, Pyrite & Sphalerite
 - (B) Galena, Sphalerite & Gold
 - (C) Chromite, Magnetite & Galena
 - (D) None of the above
- 10. Find the odd man out :
 - (A) Lamination (B) Slaty cleavage
 - (C) Schistosity (D) Foliation
- 11. Stress is expressed as : (P = Load & A = Area) :
 - (A) P/A (B) A/P
 - (C) $A \times P$ (D) $A/P \times 100$

12. Shear strain is defined as :

- (A) Change in angle between planes at right angle
- (B) Distortion of fiber
- (C) Change in angle between two angles
- (D) Strain that normally occurs
- 13. According to the Wegener the vast master continent was named :
 - (A) Panthalassa (B) Pangaea
 - (C) Gondwana (D) Laurasia

14. According to plate tectonics theory the Himalayas were formed because of the :

- (A) Southward movement of the Chinese-plate against Indian-plate
- (B) Eastward movement of the Chinese-plate and westward movement of the Indian-plate
- (C) Northward movement of the Indian-plate against Chinese-plate
- (D) None of these

CNW-25336--A

/3/

- The Himalaya may be divided into four successive zones from south to north are : 15.
 - Higher Himalaya, Lesser Himalaya, Sub-Himalaya and Trans-Himalaya (A)
 - Trans-Himalaya, Lesser Himalaya, Higher Himalaya and Sub-Himalaya **(B)**
 - Sub-Himalaya, Lesser Himalaya, Higher Himalaya and Trans-Himalaya (C)
 - Sub-Himalaya, Higher Himalaya, Lesser Himalaya and Trans-Himalaya (D)
- The zone of deep and intermediate earthquakes associated with fault zones dipping 16. obliquely into the mantle often called :
 - (A) Orogenic zone (B) Bode zone
 - (C) Benioff zone (D) Keta zone
- 17. Consider the following Statements :
 - 1. Palaeozoic era started about 600 million years ago
 - 2. Reptiles evolved during Carboniferous Period
 - 3. Permian was the longest period in Palaeozoic era

Which of the statements given above are correct?

- (A) 1 and 2 only
- (B) 2 and 3 only
- 1 and 3 only (C)
- (D) 1, 2 and 3

(C)

18. Source of famous Makrana Marble belongs to the :

- Delhi Super Group (A) (B) Dharwar Super Group
 - Bhilwara Super Group

141

- (D) Gondwana Super Group
- 19. Iron Ore Group of Singhbhum is equivalent to :
 - (A) Bijawar Group (B) Shillong Group
 - (C) Vanivilas Group (D) Bababudan Group
- 20. Representative plant fossil of Upper Gondwana is :
 - (A) Ptilophyllum (B) Glossopteris
 - (C) Gangamopteris (D) Vertebraria

21. Dimorphic in foraminifera means :

- Two parts of a single test (A) (B) Two chambered test
- Two forms of the same species (D) None of the above (C)

CNW-25336-A

- 22. The Trilobites are confined to the :
 - (A) Azoic
 - (C) Mesozoic
- 23. Three toes are the characteristics of :
 - (A) Eohippus
 - (C) Pliohippus
- 24. Lamellibranchia is the name of :
 - (A) Phylum
 - (C) Order
- 25. Quartz mineral belongs to :
 - (A) Sorosilicates
 - (C) Cyclosilicates
- 26. Olivine mineral is crystallrized in :
 - (A) Monoclinic system
 - (C) Hexagonal system
- 27. Garnets are characterized by their :
 - (A) Rhombodecahedron form
 - (C) Octahedron form
- 28. Match the following correctly :

I

- 1. Isometric system
- 2. Hexagonal system
- 3. Tetragonal system
- 4. Orthorhombic system
 - (A) 1-i, 2-ii, 3-iii, 4-iv
 - (B) 1-ii, 2-iii, 3-iv, 4-i
 - (C) 1-iii, 2-iv, 3-i, 4-ii
 - (D) 1-iv, 2-i, 3-ii, 4-iii
- 29. Acicular habit is shown by:
 - (A) Calcite
 - (C) Natrolite

CNW-25336--A

- (B) Palaeozoic
- (D) Tertiary
- (B) Mesohippus
- (D) All of the above
- (B) Class
- (D) Sub-order
- (B) Inosilicates
- (D) Tectosilicates
- (B) Triclinic system
- (D) Orthorhombic system
- (B) Trapezohedron form
- (D) Both (A) & (B)

Π

- i. Galena-type
- ii. Beryl-type
- iii. Zircon-type
- iv. Barytes-type

- (B) Orpiment(D) Zircon

/5/

30.	Which t	ype of extinction is often shown	by Quart	z mineral ?
	(A)	Straight	(B)	Oblique
	(C)	Symmetrical	(D)	Wavy
31.	Schiller	ization is shown by :		
	(A)	Plagoclase	(B)	Augite
	(C)	Hypersthene	(D)	Diamond
32.	What is	the hardness of mineral Staur	olite ?	
	(A)	5 – 5,5	(B)	5-6
	(C)	6 - 6.5	(D)	7 – 7.5
33.	The cry	stallization of magma is gover	med by t	he factor/factors :
	(A)	Temperature and pressure	(B)	Composition of magma
	(C)	Viscosity of magma	(D)	All the above
34.	Plutonic	igneous rocks are formed und	der (
	(A)	Deep seated and moderate te		re-pressure conditions
	(B)			perature pressure conditions
	(C)			re and fast cooling conditions
	(D)			re and slow cooling conditions
35.	Well rou	inded, well sorted sediments a	re said to	o be :
	(A)	Texturally mature	(B)	
	(C)	Texturally immature	(D)	Compositionally immature
36.	Sandstor	e containing considerable prop	portion of	f feldspar derived from the rapid
	weatheri	ng of granite mass is known a	s :	
	(A)	Arkose	(B)	Graywacke
	(C)	Arenite	(D)	Sub-Graywacke
37.	Homfels	es are the example of	met	tamorphism.
	(A)	Dynamic	(B)	Thermal
	(C)	Dynamo-thermal	(D)	All of the above

- -

_

i

CNW-25336-A

38	B. Proce	ss of metamorphism causes		of rook motovial
	(A		(B)	
	(C	•		,
	(-	,	(D)	Diagenesis
39). Decca	n traps are predominantly tholei	itic in natu	re and characterized by :
	(A) Higher Fe and Ti		Lower Fe and Ti
	(C) Higher Al and Ca		Higher Mg and Na
40	Flomo	enter su été aux a CC de la Cara de la		
-10		nts with an affinity for sulphur ar		
	(A)	1		Sidrophile
	(C)) Atmophile	(D)	None of the above
41.	Minera	als in which a country has total ir	nadequacy	and depend upon foreign sources
	for its 1	needs are described as :	- 1	and append upon foreign sources
	(A)	Strategic minerals	(B)	Critical minerals
	(C)	Essential minerals	(D)	Expendable minerals
42.	Chalco	cite is a/anof c	opper.	
	(A)			Sulphide
	(C)	Carbonate		Hydroxide
43.	M	F .1		
43.		the copper deposits have been	formed by	:
	(A)	Hydrothermal process	(B)	Magmatic concentration
	(C)	Contact metamophism	(D)	Supergene enrichment
44.	The bigg	gest iron ore field of India is situa	ated in the ;	
	(A)	61 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Mayurbhanj distt.
	(C)	Cuttack distt.		Salahandi distt.
1 F	TL .	127		
45.		ditions necessary for the formati	on of an oil	pool:
	(A)	Source Rock	(B) N	Aigration and accumulation
	(C)	Suitable reservoir and Trap	(D) A	All of the above
46.	Proximat	te analysis of coal detemines :		
	(A)	Moisture content and volatile n	19tte r	
	(B)	Ash percentage		
	(C)	Fixed carbon and heating calori	fic value	
	(D)	All of the above		
	- /	`		
CNV	V-25336	Α	11	7 /

171

47. Coal has:

(A) Sedimentary origin

- (B) Metamorphic origin
- (D) None of the above
- (C) Igneous origin
- 48. Source rock in the Bombay High oil field is :
 - (B) Sandstone (A) Limestone
 - (D) Clay (C) Shale
- 49. Presence of fluoride in water greater than permissible level of 1.5 mg/lit. causes :
 - (A) Cardiovascular disease
- (B) Methemoglobinemia
- (D) Dental fluorosis (C) Hepatitis
- 50. Which seismic method is/are more commonly used for groundwater surveys?
 - (A) Seismic reflection
 - (B) Seismic refraction
 - (C) Both seismic refraction and seismic reflection
 - Seismic reflection with gravity method (D)
- 51. Permeability of a material is a measure of :
 - (A) Voids available in the material
 - (B) Voids and solid particles available in the material
 - (C) Its capacity to transmit water through its interstices
 - (D) Its capacity to retain water in the material
- 52. The zone which is found below the water table is known as :
 - (B) Zone of saturation (A) Zone of aeration
 - (D) Capillary zone
 - (C) Vadose zone
- 53. The P-wave velocities are highest in :
 - (B) Water (A) Air
 - (D) Granite (C) Sand
- 54. Earthquakes whose depth of focus ranges between 300-700 km are known as : (B) Intermediate focus earthquakes
 - (A) Shallow focus earthquakes
- (D) Normal earthquakes
- (C) Deep focus earthquakes
- CNW-25336-A

- 55. A plate comprises :
 - (A) Crust only
 - (B) Crust and upper portion of mantle
 - (C) Crust and middle portion of mantle
 - (D) Crust and whole of the mantle
- 56. What may be the causes of plate motion ?
 - (A) The gravitational difference
 - (B) The difference between heat flow values
 - (C) The convection-current condition in the mantle zone
 - (D) All the above
- 57. Which region of the electromagnetic spectrum is known for all-weather remote sensing ?

(A)	Visible	(B)	Microwave
(C)	Thermal	(D)	Hyperspectral

58. Which one of the following is a geostationary satellite ?

(A)	Landsat	(B)	Insat
(C)	IRS	(D)	SPOT

59. A stream's discharge is :

- (A) influenced by channel width and depth, stream gradient, channel shape, and channel roughness
- (B) the product of a stream's velocity and channel cross-sectional area
- (C) the volume of water passing a fixed point per unit time
- (D) all of these

60. The process of fluidizing water-saturated soil during an earthquake is known as :

- (A) Gelatinization (B) Quick sand
- (C) Liquefaction (D) None of these

CNW-25336-A

20	14

M.Sc. Applied Geology/A

1.	Which of	The following is not a mineral?			
	(A)	Amethyst	(B)	Augite	
	(C)	Phlogopite	(D)	Coprolite	
	(0)				
2.	A stable	part of the Earth's crust that has	s been	little deformed for a prolonged	
2.	period :	ALAN STREET STREET STREET			×
	(A)	Island arc	(B)	Ocean floor	N. C.
	(C)	Craton	(D)	Foreland basin	
	(-)				
3.	The proc	cess of jumping, bouncing and drif	ting ac	tion of sand particles.	1
51	(A)	Hydraulic action	(B)	Saltation	
	(C)	Siltation	(D)	Solifluction	
4.	Which o	of the following is not correct?			
	(A)	The present is key to past			
	(B)	Age of the Earth is 4.6 Ga			
	(C)	Crust is the topmost layer of Lit	hosphe	ere	
	(D)	Volcanoes are restricted to Oce			
5					
5.	A mass	of soil or other material sliding alo	ongac	urved and rotational surface :	
	(A)	Slump	(B)		
	(C)	Creep	(D)	Debris flow	
		e ang may condition of			
6.	Which	of the following belongs to Karst t	opogra	aphy?	
	(A)	Lapis	(B)	Hogback	
	(C)	Cuesta	(D) All of the above	
7.	Which	of the following is not a structural	landfor	rm?	
	(A)) Scarp) Terra Rosa	
	(C)) Graben	(D) Cuesta	
				in deployed is the training of A	
C	CLM-5368	81-A		2 ×	

8.	Which of	The Soil horizons is also called the	e zone o	of Eluviation?	
	(A)	O Horizon	(B)	A Horizon	
	(C)	B Horizon	(D)	R Horizon	
9.	The angle	e between the bedding surface wit	h the he	orizontal in vertical plane :	
	(A)	Dip	(B)	Rake	
	(C)	Heave	(D)	Hade	
10.	The stres	s component which inhibits sliding	2:		
	(A)	Shear stress	(B)	Normal stress	
	(C)	Effective stress	(D)	Both (A) and (B)	
11.	The angle	e between the limbs of isoclinal fo	ld is :		
	(A)	90	(B)	45	
	(C)	180	(D)	0	in ngabariné N
12.	Which o	f the following structures place ol	der roc	ks over the younger ones?	
	(A)	Folds	(B)	Unconformities	
	(C)	Thrusts	(D)	Normal Faults	
13.	The disc	ontinuity between lower and uppe	er conti	nental crust is known as :	
	(A)	Conrad Discontinuity	(B)	МОНО	
	(C)	Lehman Discontinuity	(D)	Gutenberg Discontinuity	
14.	Ophiolit	es are found at :			
	(A)	Mid Oceanic ridges	(B)	Pacific type of orogeny	
	(C)	Collision Mountain Belts	(D)	Andean type orogeny	
15.	The velo	ocity of S-waves is lowest in :			
	(A)	Upper Crust	(B)	Outer Core	
	(C)	Mantle	(D)	Inner Core	
				<i>,</i>	

3 ×

CLM-53681-A

- 16. Pratt's hypothesis assumes :
 - (A) Constant depth to the base of outermost shell of the Earth
 - (B) Density of the outer shell of the Earth varies with topography
 - (C) Both (A) and (B)
 - (D) None of the above
- 17. Which of the following statements is not true?
 - (A) The origin of surface water is meteoric
 - (B) Groundwater is found in the porous media
 - (C) Piezometric surface is the water level in confined condition
 - (D) Water below the ground surface is groundwater
- 18. Hydraulic conductivity of a rock is dependent on :
 - (A) Effective porosity(B) Fluid viscosity(C) Hydraulic gradient(D) Both (A) and (B)
- 19. Which of the following lithologies is a good aquifer?
 - (A) Sand stone(B) Limestone(C) Mudstone(D) Granite
- 20. The maximum permissible limit of Fluoride in water for drinking purposes :
 - (A) 3.0 mg/L
 (B) 3.5 mg/L
 (C) 2.5 mg/L
 (D) 1.5 mg/L
- 21. The reservoir rocks of petroleum are generally :
 - (A) Igneous rocks(B) Metamorphic rocks(C) Sedimentary rocks(D) All of the above

22. Coal is constituted of:

(A)	C, O, N	(B)	C, H, O, S, N, H ₂ O
(C)	C, H, O, S, N	(D)	C, H, S, H,O

X

CLM-53681-A

00	D'		C '1	C	.1	1 .	.1 1 .
23.	Primary	moration	OT OIL	trom	the source	rock 191	mostly due to :
40.	I I IIII y	ingianon	OI OII	nom	une source	TOOK ID I	mostly and to .

- (A) Decrease in permeability of source rock
- (B) High pressure of source rock
- (C) Compaction of source rock
- (D) All of the above

24. Carbon content is maximum in :

- (A) Anthracite(B) Sub-bituminous(C) Bituminous(D) Lignite
- 25. Th: point of origin of earthquakes is known as :
 - (A) Epicenter(B) Magnitude(C) Focus(D) Release point
- 26. Most of the earthquakes are concentrated along :

(A)	Mid-ocean ridges	(B)	Subduction zones
(C)	Strike slip faults	(D)	All of the above

27. S-waves do not pass through :

- (A) Crust (B) Mantle
- (C) Outer core (D) Inner core

28. The density of continental crust is :

(A)	2.7 gm/cm ³	(B)	3.3 gm/cm^3
(C)	0.7 gm/cm ³	(D)	1.7 gm/cm^3

29. Which of the following statements is not correct?

- (A) Metamorphic rocks are formed due to high P and T
- (B) Amphibolite, Phyllite and Quartzite are metamorphic rocks
- (C) Andalusite is a high P and T mineral
- (D) Sillimanite is a high P and T mineral

CLM-53681-A

5 ×

The mode	with normhyroblastic texture is		
		(\mathbf{B})	Schist
			Marble
(C)	Quartzite	(D)	
betreen .		Jonet	alements in the earth's crust in
		idant	elements in the earth's crust in
			Si O Ec Al Co Na
(A)			Si, O, Fe, Al, Ca, Na
(C)	O, Si, Ca, Al, Fe, Na	(D)	Si, O, Al, Fe, Ca, Na
			The set of any lithershile
(A)			These elements are lithophile
(C)	These elements are atmophile	(D)	These elements are siderophile
Oligocer	ne Epoch belongs to the Series :		
(A)	Paleogene	(B)	Neogene
(C)	Quaternary	(D)	Cretaceous
Which o	f the following is Eon?		
(A)	Paleozoic	(B)	Mesozoic
	Phanerozoic	(D)	Oligocene
(-)			
Theage	of Muth quartzite of Kashmir:		
19.50		(B)	Devonian
		(D)	Silurian
(C)	Cumonar		
Somri (From belongs to the Super Group		
			Cuddapa
			and the second sec
(C)	Dnarwar	(Ľ)	
	1 1 00 1 1 1 1 1 1 1		
(C)	001	(D)) 101
	 (A) (C) The relation of the relatio	 (C) Quartzite The relative abundance of the most abundacereasing order: (A) O, Si, Al, Fe, Ca, Na (C) O, Si, Ca, Al, Fe, Na Fe, Co, Ni, Pt, Re: (A) These elements are chalcophile (C) These elements are atmophile Oligocene Epoch belongs to the Series: (A) Paleogene (C) Quaternary Which of the following is Eon ? (A) Paleozoic (C) Phanerozoic The age of Muth quartzite of Kashmir: (A) Carboniferous (C) Cambrian 	 (A) Gneiss (B) (C) Quartzite (D) The relative abundance of the most abundant decreasing order : (A) O, Si, Al, Fe, Ca, Na (B) (C) O, Si, Ca, Al, Fe, Na Fe, Co, Ni, Pt, Re : (A) These elements are chalcophile (B) (C) These elements are atmophile Oligocene Epoch belongs to the Series : (A) Paleogene (B) (C) Quaternary Which of the following is Eon ? (A) Paleozoic (B) (C) Phanerozoic The age of Muth quartzite of Kashmir : (A) Carboniferous (B) (C) Cambrian (D) Semri Group belongs to the Super Group : (A) Aravalli (B) (C) Dharwar (D)

CLM-53681-A

6 X

3	8.	The crys	tal system with $a \neq b \neq c$ and $\alpha =$	γ = 90	$\beta \neq 90$:	
		(A)	Triclinic	(B)	Monoclinic	
		(C)	Cubic	(D)	Rhombohedral	
		(0)				
	39.	Mostcon	nmon triclinic minerals that show t	winning	5 .	
-)),	(A)	Albite	(B)	Orthoclase	
		(T I) (C)	Sanidine	(D)	All of the above	
		(0)				
	40.	Polymor	$rph of Al_2SiO_5$:			
	TU:	(A)	Andalusite	(B)	Sillimanite	
		(C)	Kyanite	(D)	All of the above	
	41	Which	f the following mineral belongs to	ortho-j	pyroxene?	
	тι.	(A)	Augite	(B)	Diopside	
		(C)	Enstatite	(D)	Hedenbergite	
		(0)				
	10	Thoph	nomenon of double refraction is f	ound in	1	
	42.	(A)		(B)	Uniaxial minerals	
		(C)	Both (A) and (B)	(D)	None of the above	
					and conservation aired to state	
	43.	The sha	pe of the indicatrix of optically po	sitiven	ineral is:	
		(A)	Spherical	(B)		
		(C)	Oval	(D)	Fibrate spherold	X
		-	1' 1 laurato :			
v	44.		aline belongs to : Cyclosilicates	(B)	Sorosilicates	
		(A) (C)) Phyllosilicates	
	45.	Glome	proporphyritic texture is found in :			de la composición de
		(A)) Diorite	(B		
		(C) Basalt	(D) Charnockite	
			·			
	46		imary minerals of Granite are :) Quartz, Olivine, Plagioclase, I	Pvroxer	ne	
		(A (B	TT C11 Distite			
		(0	The D' I'le			
		(I				
			10			

CLM-53681-A

7 X

47.	The disti	nguished identification tool o	f Arkose is :		
	(A)	Presence of cleavage	(B)	Absence of cleavage	
	(C)	Presence of feldspar	(D)	Absence of feldspar	
48.	Cross be	dding is found in sedimentar	y rocks depo	osited in :	
	(A)	Alluvial fans	(B)	Point bars	
	(C)	Levees	(D)	All of the above	
49.	The Spec	ctral resolution of thermal IR	image of La	undSat 8 is :	
	(A)	30 m	(B)	50 m	
	(C)	100 m	(D)	70 m	
50.	Which of	of the following remote s	ensing app	lication is suitable for l	locating
	deforesta	ation?			
	(A)	Thermal IR	(B)	Color IR	
	(C)	Microwave	(D)	Radar	
51.	Which o	f the following statements is			
	(A)	Landslides pose a great three			
	(B)	The eruption of volcanoes			
	(C)	Earthquakes do not kill peo			
	(D)	Flood disaster is due to end	roachment	of flood plains	
52.		i is caused due to :			
	(A)	Excessive rainfall and flood	ing (B)		
	(C)	Earthquakes	(D)	Ocean storms	
53.	The larg	est mica deposits are found i	n:		
	(A)	Karnataka	(B)	Jharkhand	
	(C)	Orissa	(D)	Goa	
54.	Geologi	ically the Porphyry copper de	posits occur	rin:	
	(A)	Intrusive rocks	(B)	Extrusive rocks	
	(C)	Veins	(D)	All of the above	
CI	M-53681	A		8	
UL	111-33001			x	

	55.	Epitherm	al deposits occur mainly as :		
		(A)	Nugets	(B)	Basalts
		(C)	Sedimentary rocks	(D)	Veins
	56.	Which of	f the following minerals contain Tho	rium ?	?
		(A)	Uraninite	(B)	Pyrite
		(C)	Monazite	(D)	Tourmaline
	57.	Brachiop	oods were abundant in :		
		(A)	Paleozoic	(B)	Mesozoic
		(C)	Cenozoic	(D)	Present
	58.	The Siwa	aliks are known for the following fo	ssils :	
2	فمسسر	(A)	Trilobites	(B)	Vertebrates
		(C)	Dinosaurs	(D)	All of the above
	59.	The earli	iest known fossil horse is :		
				(\mathbf{R})	Orohinnus

(A) Epihippus(B) Orohippus(C) Mesohippus(D) Megahippus

60. Which of the following is not a Lower Gondwana plant fossil?

- (A) Gangamopteris (B) Glossopteris
- (C) Dicrodium (D) Rhizomaspora

CLM-53681-A

2012

M.Sc. Applied Geology/A

1.	The statement "Present is key to the past" describes which of the basic geological						
	concept						
	(A)	Catastrophism	(B)	Uniformitarianism			
	(C)	Principle of fossil succession	(D)	Exoschism			
2.	Propone	ents of catastrophism envision the ag	ge of earth a	s :			
	(A)	Much older than the current estimates					
	(B)	Much younger than the current est	imates				
	(C)	Same as the current estimates					
	(D)	They didn't address the age of ear	th				
3.	Resistiv	ity surveying method is used to me	asure whicł	of the following physical			
	property			for the following physical			
	(A)	Dielectric constant	(B)	Density			
	(C)	Electrical conductivity	(D)	Remanence			
4.	The bour	ndary between the saturated zone ar	d the unsatu	urated zone is called :			
	(A)	Aquifer	(B)	Water table			
	(C)	Aquiclude	(D)	Cone of depression			
5.	Which of	f the following is not a feature of the	ocean floor	?			
	(A)	Oceanic ridge	(B)	Ocean trench			
	(C)	Guyot	(D)	Fjords			
6.	Choose t	he option that does not fit the patter	n :				
	(A)	Abyssal plain	(B)	Seamount			
	(C)	Oceanic ridge	(D)	Continental slope			
7.	The India	n plate collided with Eurasian plate t	o form Him	alayas approximately :			
	(A)	100 million years ago	(B)	200 million years ago			
	(C)	50 million years ago	(D)	500 million years ago			

CZB-29325(A)

- 8. Choose the correct statement :
 - (A) Anticlines dip towards each other
 - **(B)** Synclines dip away from each other
 - (C) Axial plane divides the fold into two unequal parts
 - (D) All of the above statements are wrong
- What happens when accumulation of snow/ice exceeds its ablation in the glacier? 9.
 - (A) Ġlacier recedes **(B)** Glacier advances
 - Maintains equilibrium (D) Glacier fragments (C)
- 10. Which of the following statement about the Water table is true?
 - The water table is generally flat (A)
 - (B) The water table follows topography
 - The water table is always shallow (C)
 - The water table is below the land surface in lakes (D)

Which one of the following is a sign of Karst? 11.

(A)	Sinkholes	(B)	Caves
(C)	Speleothems	(D)	All of the above

The origin of simplest form of life is attributed to : 12.

(A)	Archaezoic era	(B)	Proterozoic era
(C)	Cambrian era	(D)	Carboniferous period

13. Caves tend to form in:

(A)	Granite rocks	(B)	Basalt rocks
(C)	Carbonate rocks	(D)	All of the above

14. Shiva lingum in Holy Amarnath cave is an example of :

- **(B)** Stalagmite (A) Icicle
- (D) Speleothem Cone of depression (C)
- 15. Jet Stream is a :
 - Ocean current **(B)** (A) Warm current Local wind (D)
 - (C) Upper air westerlies

CZB-29325(A)

3

6.		id rocky shell between the crust	and the outer co				
	(A)	Lithosphere	(B)	Mantle			
	(C)	Continental shelf	(D)	Subduction zone			
17.	The sun	n total of all life on earth refers to	:				
	(A)	Lithosphere	(B)	Biosphere			
	(C)	Hydrosphere	(D)	Atmosphere			
18.	Which r	ocks originate at the surface of th	he solid earth?				
	(A)	Metamorphic	(B)	Igneous			
	(C)	Sedimentary	(D)	All of the above			
19.	Deep va	lleys eroded into the continental	slope and shelf	are called :			
	(A)	Submarine canyons	(B)	Abyssal valley			
	(C)	Oceanic trenches	(D)	Oceanic ridge			
20.	Most of the volcanic activity on the seafloor takes place on :						
	(A)	Continental rises	(B)	Mid-oceanic ridges			
	(C)	Abyssal plains	(D)	Continental shelves			
21.	Which of the following describes the build up and the release of stress during an						
	earthqua			-			
	(A)	The Richter scale					
	(B)	The Modified Mercalli scale					
	(C)	The elastic rebound theory					
	(D)	Moment magnitude scale					
22.	Earthqua	ikes can occur with :					
	(A)	Normal faulting	(B)	Thrust faulting			
	(C)	Reverse faulting	(D)	All of the above			
23.	The bulk modulus measures :						
	(A)	The resistance to change in elec	tric field				
	(B)	The resistance to change in volu					
	(C)	The resistance to change in grav	rity field				
	(D)	The resistance to change in elect	•				

CZB-29325(A)

...

- 24. During the passage of P and S waves through the rock, the rock particle move :
 - (A) Back and forth parallel to the directions of the waves
 - (B) Perpendicular to the direction of waves
 - (C) In rolling elliptical and circulation motions
 - (D) Differently with respect to these two waves
- 25. Which of the following problems is associated with climate change?
 - Carbon dioxide emissions (B) Methane emissions
 - (C) Deforestation (D) All of the above
- 26. Which of the following observations may indicate the forthcoming destructive earthquake?
 - (A) Crustal deformation and increase in the frequency of small earthquakes
 - (B) Abrupt increase in the river discharge
 - (C) Extreme weather conditions
 - (D) Landslides

(A)

- 27. Bouguer gravity anomaly refers to gravity observations adjusted for the :
 - (A) Effects of sun and moon attractions
 - (B) Effects due to earth's rotation
 - (C) Effects due to Change in height
 - (D) All of the above
- 28. The most common structural element of the silicate mineral group is :
 - (A) A silicon-aluminium tetrahedron
 - (B) A silicon-oxygen tetrahedron
 - (C) A silicon-oxygen octahedron
 - (D) A silicon-nitrogen tetrahedron
- 29. Which of the following is the most abundant cation in the continental crust?
 - (A) Silicon (B) Aluminium
 - (C) Oxygen (D) Iron

CZB-29325(A)

30.	Which of the following statements regarding the density of minerals is true?					
	(A)					
	(B)		-			
	(C)					
	(D)					
31.	Diama	ndia an annual (C. 1. 4. C. C.	1			
51.	(A)	nd is an example of what type of bon Metallic				
	. ,		(B)	Bail		
	(C)	Ionic	(D)	Covalent		
32.	The che	emical formula (Mg, Fe) ₂ SiO ₄ describ	bes which of	the following minerals?		
	(A)	Pyroxene	(B)	Olivine		
	(C)	Mica	(D)	Feldspar		
33.	The mo	st common rock forming minerals ar				
501	(A)	Silicates		Carta d		
	(C)	Oxides	(B)	Carbonates		
	(0)	Oxides	(D)	Sulphides		
34.	Remote	sensing uses :				
	(A)	Electric waves	(B)	Seismic waves		
	(C)	Magnetic waves	(D)	Electro-magnetic waves		
35.	All the features on the surface of earth emit radiation that has :					
	(A)	Longer wavelengths				
	(B)	Shorter wavelengths				
	(C)	Both short and long wavelengths				
	(D)	Ultraviolet wavelengths				
36.	Which o	f the following is not a renewable en	A#011 6011#00	9		
	(A)	Solar	(B)			
	(C)	Geothermal	(D)	Hydropower Uranium		
	(0)	Geoderma	(D)	Oranium		
37.	Which o	f the following rock types is most lik	ely to be the	e best oil reservoir ?		
	(A)	Shale	(B)	Sandstone		
	(C)	Granite	(D)	Salt		

•	A permeable rock that contains hydrocarbon fluid and gases is called :					
	(A)	Oil reservoir	(B)	Oil trap		
	(C)	Source bed	(D)	Salt dome trap		
39.	The valley glaciers, most common in our state, are also known as :					
	(A)	Gorge glaciers	(B)	Upland glaciers		
	(C)	Alpine glaciers	(D)	Lowland glaciers		
40.	Glaciatio	on occurs due to :				
	(A)	precipitation and melting of snow				
	(B)	burial and metamorphism of snow				
	(C)	ablation and surge				
	(D)	drift and movement of ice				
41.	Which o	f the following is a glacial deposit and	not an erc	osional feature?		
	(A)	A hom	(B)	A cirque		
	(C)	An arte	(D)	A moraine		
42.	The loess paleosols of Kashmir Karewas preserve the climatic record of the region					
	for about :					
	(A)	65 million years	(B)	4.6 billion years		
	(C)	1.6 million years	(D)	0.65 million years		
43.	A gently sloping platform of bedrock that is left behind as a mountain front erodes is called :					
	(A)	Alluvial fan	(B)	Pediment		
	(rt) (C)		(D)	Erg		
44.	The oldest rocks of Kashmir Himalayas, known as Salkhala, are of :					
	(A)	Devonian	(B)	Ordivicians age		
	(C)	Silurian age	(D)	Pre-Cambrian age		
45.		th quartzite is of :	(JII)	Dormion ago		
	(A)	Cambrian age Jurassic age	(B) (D)	Permian age Devonian age		

46.	The rat	e of cooling of magma/lava is refl	ected by :			
	(A)	Mineralogy of the rock	(B)	Color of the rock		
	(C)	Texture of the rock	(D)	Density of the rock		
47.	Which	of the following minerals is the mo	ost abundant mi	ineral in ultramafic rocks?		
	(A)	Amphibole	(B)	Olivine		
	(C)	Sodium plagioclase	(D)	Quartz		
48.	The fine	e grained equivalent of granite is :				
	(A)	Basalt	(B)	Andesite		
	(C)	Rhyolite	(D)	Gabbro		
49.	Which c	of the following minerals is least su	isceptible to ch	emical weathering?		
	(A)	Quartz	(B)	Calcite		
	(C)	Olivine	(D)	Plagioclase		
50.	A feldsp	par rich sandstone is called :				
	(A)	Shale	(B)	Arkose		
	(C)	Quartz arenite	(D)	Litharenite		
51.	Which mineral is responsible for the strong foliation in schist?					
	(A)	Mica	(B)	Calcite		
	(C)	Quartz	(D)	Foliate		
52.	2. Metasomatism is :					
	(A)	The change in the bulk composit	tion of a rock d	uring metamorphism		
	(B)	The parallel alignment of minera		-		
	(C)	The metamorphism caused by no	earby intrusion	S		
	(D)	The metamorphism caused by te	ctonic movem	ents along faults		
53.	A talus c	one is produced by a :				
	(A)	Mud flows	(B)	Rock fall		
	(C)	Rock glides	(D)	All of the above		
54.	Which of	the following mass movements is	s the fastest ?			
	(A)	Debris avalanche	(B)	Soil creep		
	(C)	Earthflow	(D)	Mudflows		
C7D	2022514	`				

CZB-29325(A)

1

-

55. A seamount is :

- A submerged volcano (A)
- A coral reef above a submerged volcano **(B)**
- A small rise in the seafloor (C)
- All of the above **(D)**

56. Which of the following statements about crustal deformation is false?

- Hotter rocks are more likely to deform than cooler rocks (A)
- Generally igneous rocks are less deformable than most sedimentary rocks **(B)**
- Young sediments are easily deformed (C)
- Rocks under low confining pressure are more likely to deform than rocks (D) under high confining pressure
- 57. Upfolds of layered rock are called :
 - **(B)** Synclines Faults (A) Unconformities (D) Anticlines (C)
- 58. Which of the following radioactive isotopes has the shortest half-life?
 - Uranium-238 **(B)** Rubidium-87 (A)
 - Potassium-40 **(D)** (C) Carbon-14

59. What causes the tsunami?

- Undersea event **(B)** (A) Gravity
- (D) Ocean currents (C)
- 60. The last great ice age existed in :

Triassic

Pleistocene

- Pliocene **(B)**
- Miocene (D)

CZB-29325(A)

Wind

(A)

(C)

M.Sc Applied Geology 2011

Applied Geology

1.	Moho is	deepest under :		
5	(a)	Himalaya	(b)	Japan island arc
*	(c)	Atlantic Ocean Ridge	(d)	Cratons
2.	Which o	f these crystal systems is also know	n as is	sometric crystal system?
	(a)	Tetragonal system	(b)	Cubic system
	(c)	Orthorhombic system	(d)	Triclinic system
3.	The larg	est reservoir of carbon on earth is :		
	(a)	Oceans	(b)	Atmosphere
	(c)	Carbonate rocks	(d)	Biosphere
4.		f the plate boundary is neither const		
	(a)	Ocean ridge	(b)	Transform fault
	(c)	Subduction zone	(d)	None
_				
5.		s belong to the phylum :		
	(a)	Brachiopoda	(b)	Mollusca
	(c)	Chordata	(d)	Arthropoda
				1. 11
6.		iest stage of metamorphic deformat		-
	(a)	Schistosity	(b)	Phyllitic structure
	(c)	Slaty cleavage	(d)	Gneissosity
7.	Which	f these erosional features is produc	ad by	wind action 2
7.		-	(b)	Stack
	(a)	Yardangs Cirque	(d)	Potholes
	(c)	Clique	(u)	rouloies
8.	Mostof	the banded iron formation was dep	osited	1.
0.	(a)	From 3.5 until 2.5 Ga	(b)	At 1.8 Ga
	(u) (c)	At 0.8 Ga	(d)	0.6 Ga
		2 xt 0.0 Gu	(4)	

TLV-17122

-

9. 7	Thorium-rich m	ionazite sand	deposits	in lı	ndia are	found	in :
------	----------------	---------------	----------	-------	----------	-------	------

(a) Gujrat	(b)	Kerala	
------------	-----	--------	--

(c) Maharashtra (d) Chhatisgarh

1	0.	Identify the odd one :	
-	•••	rading the out one.	

(a)	Slickensides	(b)	Slickenlines
(c)	Striations	(d)	Mylonite

11. Which of the following crystals shows polysynthetic twinning?

(a) Oypsum (b) Aragoni	(a) Gypsum	(b)	Aragonite
------------------------	------------	-----	-----------

(c) Fluorite (d) Quartz

12. Subduction zones metamorphism is characterized by:

- (a) High temperature and high pressure
- (b) Low temperature and high pressure
- (c) Low temperature and low pressure
- (d) Options (a), (b) and (c) are all incorrect

13. Which has the highest heat content?

- (a) Anthracite (b) Peat
- (c) Semi-anthracite (d) Lignite

14. The rock with >90% olivine is called :

- (a) Pyroxenite (b) Dunite
- (c) Gabbro (d) Diabase

15. A uniaxial mineral is optically +ve if:

- (a) O-ray is slow (b) O-ray is fast
- (c) E-ray is fast (d) None of these

16. The age range of Cretaceous Period is :

- (a) 206 m.y. to 144 m.y. (b) 490 m.y. to 443 m.y.
- (c) 248 m.y. to 206 m.y. (d) 144 m.y to 65 m.y.

TLV-17122

- 17. Which of the following is an inert gas?
 - (a) Chlorine (b) Hydrogen
 - (c) Argon (d) Fluorine

18. Conodonts first appeared in :

- (a) Late Cambrian (b) Middle Proterozoic
- (c) Early Silurian (d) Late Triassic

19. When an erosional surface separates sequences of rock that are parallel to each other, the term used is :

- (a) Paraunconformity (b) Nonconformity
- (c) Disconformity (d) Angular unconformity

20. Dendrochronology refers to :

- (a) Dating of tree rings (b) Glacial varves
- (c) Pollen studies (d) Dating of cave deposits
- 21. Asthenosphere lies :

- (a) Between mantle and outer core
- (b) Between outer core and inner core
- (c) Within upper mantle
- (d) Between upper mantle and lower mantle
- 22. Which of these stands more favorably for non-organic origin of petroleum?
 - (a) Presence of porphyrins
 - (b) Depletion in carbon-13
 - (c) Association of mud volcanoes with oil fields
 - (d) Presence of isoprenoids
- 23. Dripstone that rises from the floor of a cave in carbonate terrain is called :
 - (a) Flow stone (b) Stalactite
 - (c) Dogtooth spar (d) Stalagmite

24.		ning bed that retards but does not	preven	at the flow of water to or from an
	adjacent	aquifer is termed :		
	(a)	Aquifer	(b)	Aquitard
	(c)	Aquifuge	(d)	Aquiclude
25.	Chemica	al composition of agate is :		
	(a)	KAlSi ₃ O ₈	(b)	Mg ₂ SiO ₄
	(c)	$NaAlSi_{3}O_{8}$	(d)	SiO ₂
26.	Folds that	at maintain uniform layer thickness	are ca	lled :
	(a)	Similar folds	(b)	Concentric folds
	(c)	Cuspate folds	(d)	Lobate folds
27.		at maintain uniform layer thickness		
	(a)	Outlier	(b)	Nappe
	(c)	Klippe	(d)	Inlier
28.	Precipita	tion of calcium, sulfur and oxygen in	marine	e conditions results in the deposition
	of:			
	(a)	Gypsum	(b)	Halite
	(c)	Limestone	(d)	Dolomite
29.	Erosion	by wearing down or rubbing away	is terr	ned :
	(a)	Saltation	(b)	Abrasion
	(c)	Attrition	(d)	Regelations
30.	Identify	the glacial erosional feature among	these	:
	(a)	Esker	(b)	Tillite
	(c)	Moraines	(d)	Cirque
		6	. .	
31.		of a metamorphic rock composed	ofmi	nerals bound by their own crystal
	faces is c			
	(a)	Xenoblastic	(b)	Crystalloblastic
	(c)	Idioblastic	(d)	Poikioblastic

TLV-17122

37	Electic rehaund	thanking	1		
54.	Liastic rebound	i uleory is an exp	lanation for he	ow energy is spread :	
			THE TOTAL TOTAL THE	, it energy is spread.	

- (a) During earthquakes
- (b) During glacier down-slope movement
- (c) During volcanic eruption
- (d) During flow of water down a waterfall

33. Water entrapped in the interstices of a sedimentary or extrusive igneous rock at the time of its deposition is called :

(a) Connate water	(b) Meteoric water
-------------------	--------------------

(c) Magmatic water Juvenile water (d)

34. Among the natural disaster during the year 2010 the maximum causalities were due to:

a >

. .

(a)	Floods	(b)	Earthquakes
2.12			

(c) Volcanic eruptions (d) Heat waves

35. Sliding is caused by:

(a)	Normal stress	(b)	Shear stress
(c)	Both of these *	(d)	None of these

36. Kashmir Valley owes its origin to :

Distate

(a)	Main Central Thrust	(b)	Panjal Thrust
(c)	Murree Thrust	(d)	Zanskar Thrust

37. Identify the odd one :

 $\langle \alpha \rangle$

(a)	Pleistocene	(b)	Neogene

Holocene (c) (d) Oligocene

38. Genus Trigonia belongs to the phylum :

- (a) Arthropoda (b) Mollusca
- Echinodermata (c) (d) Chordata

39.	The ang	le between two crystal faces	s is :	
	(a)	Critical angle	(b)	Solid angle
	(c)	Interfacial angle	(d)	Refraction angle
40.	When so	edimentary laminae lying tra	ansverse to th	e main stratification planes of the
	strata, tł	ne structure is termed :		\$
×	(a)	Cross bedding	(b)	Flaser bedding
	(c)	Laminar bedding	(d)	Drift bedding
41.	Thelive	example of continent-contin	nent collision	is provided by:
	(a)	Rocky mountains	(b)	Andes mountains
	(c)	Japanese islands	(d)	Himalaya
42.	Contour	lines joining points of equal	lstratigraphic	unit thickness is known as :
	(a)	Isogon	(b)	Isocline
	(c)	Isobar	(d)	Isopach
43.	Maneba	ch Law, Carlsbad Law and	Braveno Law	vare related to describing :
	(a)	Twinning	(b)	Birefrengence
	(c)	Optic axis	(d)	Interfacial angle
44.	Rock flo	our is produced by :		
	(a)	Glacier erosion	(b)	Wind erosion
	(c)	River erosion	(d)	Faulting
45.	Beckele	ens is used to view :		
	(a)	Interference figures	(b)	Pleochroic halos
	(c)	2V angle	(d)	Optic axis
46.	Goniatit	e, Ceratite and Ammonite su	uture patterns	characterize :
	(a)	Foramifera	(b)	Ostracoda
	(c)	Ammonoidea	(d)	Echinoidea

TLV-17122

1

47. Damodhar River Valley accounts for three-fourths of India's :

(a)	Iron deposits	(b) Zinc deposits
()	a chi deposito	

(c)	Copper deposits	(d)	Coal deposits

48. Which of the following is Japanese Government remote sensing satellite mission?

- (a) Landsat (b) IRS
- (c) ASTER (d) MODIS

49. From the oldest to the youngest, the correct stratigraphic order for the Siwalik Group is:

- (a) Kamlial \rightarrow Chinji \rightarrow Nagri \rightarrow Dok Pathan
- (b) Chinji \rightarrow Kamlial \rightarrow Nagri \rightarrow Dok Pathan
- (c) Dok Pathan \rightarrow Nagri \rightarrow Chinji \rightarrow Kamlial
- (d) Nagri \rightarrow Chinji \rightarrow Kamlial \rightarrow Dok Pathan

50. The age of Muth Quartzite of Kashmir Valley is :

(a)	Devonian		(b)	Cambrian
(c)	Permian		(d)	Pliocene

51. Which of these is the main factor that determines the texture of an igneous rock?

- (a) Diffusion rate (b) Nucleation rate
- (c) Rate of magma cooling (d) Crystal growth rate

52. Upper Jurassic Umia Beds of Kutch are known for :

- (a) Trilobite fossils (b) Graptolite fossils
- (c) Plant fossils (d) Dinosaurs eggs

53. A sedimentary sequence comprising sandstones, shales and conglomerates deposited in continental or shallow marine conditions in front of a rising mountain is termed :

- (a) Quartz arenite (b) Arkose
- (c) Greywacke (d) Mollase

54.	A poin	t at which there is a set 1 at	1	
54.	called :	t at which there is a sudden brea	ak of slo	pe in the long profile of a river is
	(a)	Peritectic Point	(b)	Eutectic Point
	(c)	Curie Point	(d)	Knick Point
55.	Plate te	ctonics envisages :		
	(a)	No change in earth's radius	(b)	Decrease in earth's radius
	(c)	Increase in earth's radius	(d)	Fluctuation in earth's radius
56.	Specific	yield is also known as :		
	(a)	Transmissivity	(b)	Hydraulic conductivity
	(c)	Drainable porosity	(d)	Storativity
57.	P-T con	ditions most suitable for the gene	erationo	f metamorphic ores are that of:
	(a)	Zeolite facies	(b)	Green schist facies
	(c)	Amphibolite facies	(d)	Granulite facies
58.	A fault v	where hanging wall has moved up	o-dip is ca	alled :
	(a)	Strike-slip fault	(b)	Normal fault
	(c)	Transform fault	(d)	Thrust fault
59.	Which o	f the following has marine, fresh	water and	d land distribution ?
	(a)	Bivalvia	(b)	Gastropoda
	(c)	Cephalopoda	(d)	Echinoidea
60.	Which of	f the following cause variation in	earth's	apparent gravity?
	(a)	Latitude	(b)	Altitude
			N ⁻ 	and south T

(c) Geology (d) All of these

Geology & Geophysics - 2010

				M.Sc. Geolo	ogy & Geophysics
1.	The ang	le subtended by the normals to ty	wo cryst	al faces is known as :	
	(a)	Critical angle	(b)	Interfacial angle	
	(c)	Solid angle	(d)	Refraction angle	
2.	When an	n anticlinal fold lies on its side and	d limbs o	of the fold are equally inclined, the	
	fold is de	escribed as :			
	(a)	Recumbent isoclinal anticline	(b)	Plunging anticline	
	(c)	Monocline	(d)	Ptygmatic fold	
3.	The text	ural term for metamorphic miner	als bour	nded by their own crystal faces is :	
	(a)	Xenoblastic	(b)	Idioblastic	
	(c)	Poikiloblastic	(d)	Porphyroblastic	
4.	Laterite	is formed by :			
	(a)	Weathering of a wide variety o	frocks		
	(b)	Differentiation of alkaline magn	na		
	(c)	Hydrothermal metamorphism o	flimesto	one	
	(d)	Leaching of iron ores			
5.	The eros	sional surface that separates sequ	iences o	f rock that are parallel to each	
	other is c	called :			
	(a)	Paraconformity	(b)	Nonconformity	
	(c)	Disconformity	(d)	Angular unconformity	
6.	Astheno	sphere is shallowest under :			
	(a)	Cratons	(b)	Ocean ridges	
	(c)	Island arcs	(d)	Mountain belts	
7.	Ammon	ites became extinct same time as	the :		
	(a)	Graptolites	(b)	Trilobites	
	(c)	Dinosaurs	(d)	Conodonts	
8.	An inter	nal sedimentary structure consisti	ngofstr	ratification at an angle to the	
	principal	l bedding is known as :	25		
	(a)	Cross bedding	(b)	Flaser bedding	
	(c)	Drift bedding	(d)	Laminar bedding	

ELW-6745

	Hawaiian islands are a typical example of : (a) Plume setting (b) Island arc tectonic setting					
		a service of the serv	(b)			
	(c)	Transform fault tectonics	(d)	Ocean ridge setting		
10.	Water of	curring in the Unsaturated Zor	ne betwee	n the land surface and :		
	(a)	Meteoric water	(b)	Connate water		
	(c)	Juvenile water	(d)	Vadose water		
11.	Identify	the one that is not covered under	er palynol	ogy:		
	(a)	Pollen	(b)	Diatoms		
	(c)	Spores	(d)	Acritarchs		
12.	The thru	st between Greater Himalayas	and the Lo	esser Himalayas is :		
	(a)	ISZ	(b)	MBT		
	(c)	HFT	(d)	МСТ		
13.	The weak type of chemical bonding is :					
	(a)	Metallic bonding	(b)	Covalent bonding		
	(c)	Residual bonds	(d)	Ionic bonding		
14.	Which is the correct stratigraphic order from oldest to the youngest ?					
	(a) Semri→Rewa→Kaimur→Bhander					
	(b) Semri→Kaimur→Rewa→Bhander					
	(c) Kaimur→Semri→Bhander→Rewa					
	(d)	Bhander→Rewa→Semri→K	aimur			
15.	Quartz b	elongs to the crystal system :		S		
	(a)	Trigonal .	(b)	Monoclinic		
	(c)	Tetragonal	(d)	Orthorombic		
16.	The time range of Carboniferous Period is :					
	(a)	144 – 65 Ma	(b)	490 – 443 Ma		
	(c)	433 – 417 Ma	(d)	354 – 290 Ma		
17.	A fault o	n which the offset along the stri	ke increa	ses in one direction from an initia		
	point and	d decreases in the other direction	on is called	1:		
	(a)	Reverse fault	(b)	Scissor fault		
	(c)	Wrench fault	(d)	Transform fault		

ELW-6745

3

[Turn over

988

18.	Major ea	arthquake is the one that has Ric	hter mag	mitude of :
	(a)	5.0 - 5.9	(b)	6.0 6.9
	(c)	7.0 - 7.9	(d)	8.0 - 8.9
19.	Which o	of the following occurs core to the	ne surface	e of earth?
	(a)	Graphite	(b)	Copper
	(c)	Iron	(d)	Diamond
20.	The maj	or coal deposits of India occur i	n :	
	(a)	Vindhyan Supergroup	(b)	Upper Gondwana deposits
	(c)	Dharwar Supergroup	(d)	Lower Gondwana deposits
21.	Which o	f these is a sensor, not a satellite	?	
	(a)	Landsat	(b)	IRS
	(c)	MODIS	(d)	SPOT
22.	Ageofk	Carewa sediments of Kashmir is	:	
	(a)	Miocene	(b)	Plio-Pleistocene
	(c)	Pleistocene	(d)	Miocene-Pleistocene
23.	Which o	fthe following minor are accorio	tad with r	nuclear power generation in India ?
<i>43</i> .	(a)	Khetri mines		Zawar mines
	(a) (c)	Jaduguda mines		Kolar mines
		Jaduguda mines	(u)	Rola mines
24.	Carlsbad	l twinning is common in :		
	(a)	Orthoclase	(b)	Augite
	(c)	Plagioclase	(d)	Hornblende
25.	Karst top	oography develops in :		
	(a)	Tectonically active terrain	(b)	Volcanically active terrain
	(c)	Sandstone terrain	(d)	Limestone terrain
26.	Goniatit	ic Suture and Ceratitic Suture are	e terms as	sociated with the morphology of :
	(a)	Brachiopod shell	(b)	Gastropod shell
	(c)	Cephalopod shell	(d)	Pelcepod shell

ELW-6745

27. Modern horse is thought to have evolved from a small, dog-sized animal called :

- (a) Miohippus (b) Hyracotherium or Eohippus
- (c) Kalobatippus . (d) Plesippus
- Of the following geophysical tools which one would provide direct evidence for iron ore deposit :
 - (a) Gravity survey (b) Electromagnetic survey
 - (c) Magnetic survey (d
- (d) Electric-resistivity survey

(b) Evaporation

- 29. Hydrological cycle begins with :
 - (a) Precipitation
 - (c) Condensation (d) Runoff
- 30. Which of the statements is incorrect ?
 - (a) Raster is pixel based; Vector is math-based
 - (b) Vector data is simpler to update and maintain whereas a raster image needs complete reproduction
 - (c) Vector file sizes are usually smaller than raster data
 - (d) Both raster and vector data permit easy overlay operations

31. Krishna-Godavari basin is known for :

- (a) High quality coal deposits (b) Natural gas reserves
 - (c) Uranium ore deposits (d)
- (d) Petroleum reserves
- 32. Sand bar is a depositional feature of :
 - (a) Wind action (b) River action
 - (c) Ocean currents (d) Glaciers
- 33. Which of these is intermediate between the metamorphic and the igneous rocks?
 - (a) Phyllite (b) Gneiss
 - (c) Migmatite (d) Schist
- 34. Which of the following is connate water?

(c) Juvenile water

- (a) Meteoric water (b) Magmatic water
 - (d) Fossil interstitial water

ELW-6745

35. The most abundant element in the earth's crust is : (a) Oxygen Silicon (b) (c) Hydrogen (d) Iron 36. Which is the plant root fossil? (a) Gangamopteris (b) Ptillophylum (c) Glossopteris (d) Vertebraria 37. Depth-wise ocean topography is : (a) Continental shelf-Continental rise-Continental slope-Abyssal plain (b) Continental rise-Continental shelf-Continental slope-Abyssal plain (c) Continental shelf-Continental slope-Continental rise-Abyssal plain (d) Continental slope-Continental rise-Continental shelf-Abyssal plain 38. Identify the non-gas contributor to the earth's greenhouse effect : (a) Clouds (b) CFC (c) CO, (d) CH, 39. Which of these can provide point-source contaminants to potable water? (a) Lithology (b) Municipal waste (d) Agricultural activity Industrial waste (c) 40. The seismic discontinuity between lower mantle and outer is known as : (a) Mohorovičić discontinuity (b) Conrad discontinuity (c) Gutenberg discontinuity (d) Lehman discontinuity 41. Which of the following erosional processes causes rounded and smooth rock surfaces ? (a) Attrition (b) Saltation (d) Abrasion (c) Deflation 42. Which of the following metamorphic facies represents minimum P-T conditions ? (b) Sanidinite facies Greenschist facies (a) (c) Zeolite facies (d) Glaucophane-schist facies 43. The term used for the ratio of the volume of void spaces to the total volume of rock or sediment is : Hydraulic conductivity (b) Transmissivity (a)

- (c) Permeability
- ELW-6745

(d)

Porosity

44.	Texturally and mineralogically immature sandstone that contain more than 15% clay						
	minerals	is called :					
		Quartz arenite .	(b)	Arkose			
	(c)	Greywacke	(d)	Lithic sandstone			
45.	The min	eral to crystallize last from a ma	fic magm	a is :			
	(a)	Muscovite	(b)	Olivine			
	(c)	Quartz	(d)	Orthoclase			
46.	Kerala b	eaches are known for :					
	(a)	Phosphatic deposit	(b)	Monazite sand			
	(c)	Nickel deposit	(d)	Titanium deposit			
47.	Which o	f these is non-radiogenic dating	g techniqu	e?			
	(a)	Potassium-argon dating	(b)	Carbon dating			
	(c)	Luminescence dating	(d)	Uranium-lead dating			
48.	A map th	nat shows areal extent and thick	ness variat	ion of a stratigraphic unit is called :			
	(a)	Isobar map	(b)	Isotherm map			
	(c)	Isoperm map	(d)	Isopach map			
49.	Which of the following is characterized by deep focus earthquakes?						
	(a)	Pacific ring of fire	(b)	Pacific Rise			
	(c)	African Rift Valley	(d)	Mid-Atlantic Ridge			
50.	When se	parate lateral moraines merge	together th	ney form :			
	(a)	Terminal moraine	(b)	End moraine			
	(c)	Medial moraines	(d)	Recessional moraine			
51.	A lime-rich mudstone which contains variable amounts of clays and aragonite is						
	called :						
	(a)	Siltstone	(b)	Shale			
	(c)	Mudstone	(d)	Marl			
2.	Crystal s	structure of Feldspar group of n	nineral is :				
	(a)	Framework silicate	(b)	Chain silicate			
	(c)	Sheet silicate	(d)	Sorosilicate			

ELW-6745

7

Turn over

.

- 53. Gradation of coking coal is done on the basis of :
 - (a) Heat content
- (b) Ash content
- (d) Ash and moisture content (c) Moisture content
- 54. A layered limestone rock formed by the growth of blue-green algae (cyanobacteria) is called :
 - (a) Bioclasts (b) Stromatolite
 - (c) Dolostones (d) Ooides
- 55. A smooth and rounded elongate mound of bedrock produced by glacial abrasion is called:
 - (a) Aretes
- (b) Roche mountonnee Drumlins
- (d) (c) Moraines
- 56. Texture produced by exsolution lamelle of albite occurring in orthoclase or microcline is called :
 - (b) Perthitic texture (a) Graphitic
 - Myrmekitic texture (c) Intersertal texture (d)
- 57. When light enters a mineral its velocity decreases and the frequency :
 - (a) Increases
 - (b) Decreases
 - (c) Remains same
 - (d) Initially increases and then decreases

58. A mineral that appears in the form of another mineral is known as :

- (b) Automorph (a) Isomorph (d) Polymorph
- (c) Pseudomorph
- 59. Rapid growth in plants occurred in :
 - (a) Permo-Carboniferous
 - Cambrian (c)
- (b) Silurian (d) Ordovician
- 60. Release of overburden produces :
 - (a) Columnar joints
 - (c) Conjugate joint
- (b) Exfoliation joints
- (d) Release joints

ELW-6745

8