ENTRANCE TEST-2023

SCHOOL OF PHYSICAL \& MATHEMATICAL SCIENCES OPTION—1 : STATISTICS OPTION-2 : MATHEMATICS FOR STATISTICS

Instructions for Candidates :

1. Write your Entrance Test Roll Number in the space provided at the top of this page of Question Booklet and fill up the necessary information in the spaces provided on the OMR Answer Sheet.
2. OMR Answer Sheet has an Original Copy and a Candidate's Copy glued beneath it at the top. While making entries in the Original Copy, candidate should ensure that the two copies are aligned properly so that the entries made in the Original Copy against each item are exactly copied in the Candidate's Copy.
3. All entries in the OMR Answer Sheet, including answers to questions, are to be recorded in the Original Copy only.
4. Choose the correct / most appropriate response for each question among the options A, B, C and D and darken the circle of the appropriate response completely. The incomplete darkened circle is not correctly read by the OMR Scanner and no complaint to this effect shall be entertained.
5. Use only blue/black ball point pen to darken the circle of correct/most appropriate response. In no case gel/ink pen or pencil should be used.
6. Do not darken more than one circle of options for any question. A question with more than one darkened response shall be considered wrong.
7. There will be 'Negative Marking' for wrong answers. Each wrong answer will lead to the deduction of 0.25 marks from the total score of the candidate.
8. Only those candidates who would obtain positive score in Entrance Test Examination shall be eligible for admission.
9. Do not make any stray mark on the OMR sheet.
10. Calculators and mobiles shall not be permitted inside the examination hall.
11. Rough work, if any, should be done on the blank sheets provided with the question booklet.
12. OMR Answer Sheet must be handled carefully and it should not be folded or mutilated in which case it will not be evaluated.
13. Ensure that your OMR Answer Sheet has been signed by the Invigilator and the candidate himself/ herself.
14. At the end of the examination, hand over the OMR Answer Sheet to the invigilator who will first tear off the original OMR sheet in presence of the Candidate and hand over the Candidate's Copy to the candidate.

OPTION—1 : STATISTICS

1. The coefficient of variation is 58%. If mean is 10 then standard deviation is :
(A) 5.8
(B) 580
(C) 0.17
(D) None of these
2. If the distribution is negatively skewed, then :
(A) Mean is more than the mode
(B) Mean is less than the mode
(C) Median is at right to the mode
(D) Mean is at right to the median
3. The Median of scores $25,45,35,35,40,30$ is :
(A) 45
(B) 40
(C) 35
(D) 30
4. The arithmetic mean of the first ten whole numbers is :
(A) 5.5
(B) 5
(C) 4
(D) 4.5
5. The correlation coefficient between two variables X and Y is 0.4 . The correlation between 2 X and $(-\mathrm{Y})$ will be :
(A) 0.4
(B) -0.8
(C) -0.4
(D) 0.8
6. In regression analysis, the variable that is used to explain the change in the outcome of an experiment is called :
(A) The independent variable
(B) The predictor variable
(C) The explanatory variable
(D) All of the above
7. If the coefficient of determination is equal to 1 . Then correlation coefficient :
(A) Must also be equal to 1
(B) Can either be -1 or +1
(C) Can be any value between -1 to 1
(D) Must be -1
8. If $r=0.8, b_{y x}=1.5$, then $b_{x y}$ is approximately :
(A) 0.32
(B) 0.42
(C) 0.75
(D) 1
9. Suppose $\mathrm{P}(\mathrm{X})=0.36$ and $\mathrm{P}(\mathrm{Y})=0.41$. If $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})=0.27$, what is $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$?
(A) $\frac{(0.36)(0.41)}{(0.27)}$
(B) $\frac{(0.27)(0.41)}{(0.36)}$
(C) $\frac{(0.36)(0.27)}{(0.41)}$
(D) $\frac{(0.27)}{0.36+0.41}$
10. If $P(A)=0.32$ and $P(B)=0.45$, what is $P(A \cup B)$ if A and B are independent?
(A) 0.144
(B) 0.626
(C) 0.770
(D) 0.856
11. The probability of throwing 10 with 2 dice is :
(A) $1 / 6$
(B) $1 / 12$
(C) $2 / 3$
(D) $1 / 4$
12. Which of the following can be the probability of an event?
(A) -1.3
(B) 004
(C) $3 / 8$
(D) $10 / 7$
13. Let X have pmf

$$
f(x)=\frac{x}{10}, x=1,2,3,4
$$

Then $\mathrm{E}(\mathrm{X})$ is equal to :
(A) 3
(B) 6
(C) 9
(D) 12
14. Given $\mathrm{E}(\mathrm{X}+4)=10$ and $\mathrm{E}\left[(\mathrm{X}+4)^{2}\right]=116$. Then $V(X+4)$ is :
(A) 4
(B) 16
(C) 3
(D) 9
15. The variance of probability distribution

X	-3	-2	-1	0	1	2	3
$\mathrm{P}(\mathrm{X})$	$1 / 7$	$1 / 7$	$1 / 7$	$1 / 7$	$1 / 7$	$1 / 7$	$1 / 7$

is :
(A) 0
(B) 8
(C) 4
(D) 12
16. The Mean of the distribution

$$
\binom{10}{x}\left(\frac{2}{5}\right)^{x}\left(\frac{3}{5}\right)^{10-x}, x=0,1,2, \ldots 10
$$

is :
(A) 4
(B) 5
(C) 6
(D) 10
17. Let X have the Uniform pdf $U(0,100)$, then variance of X is given by :
(A) $1 / 12$
(B) $100 / 12$
(C) $1000 / 12$
(D) $10000 / 12$
18. The point of inflexion of normal curve are :
(A) $\mu \pm \sigma$
(B) $\mu \pm 3 \sigma$
(C) $\mu \pm 2 \sigma$
(D) None of these
19. Match the following :

Distribution
 MGF

a. Normal
b. Gamma
c. Poisson

1. $\mathrm{e}^{\lambda}\left(\mathrm{e}^{\mathrm{t}}-1\right)$
2. $e^{\mu t}+t^{2} \sigma^{2} / 2$
3. $(1-t)^{-\lambda}$
(A) $\mathrm{a}-2, \mathrm{~b}-1, \mathrm{c}-4$
(B) $\mathrm{a}-3, \mathrm{~b}-1, \mathrm{c}-2$
(C) $\mathrm{a}-1, \mathrm{~b}-3, \mathrm{c}-2$
(D) $\mathrm{a}-2, \mathrm{~b}-3, \mathrm{c}-1$
4. If $X_{1}, X_{2}, X_{3}, \ldots . X_{n}$ are independent and have normal distributions $\mathrm{N}\left(\mu_{\mathrm{i}}, \sigma_{\mathrm{i}}^{2}\right), \mathrm{i}=1,2,3 \ldots . . \mathrm{n}$, respectively. Then the distribution of

$$
\mathrm{W}=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\frac{\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{i}}}{\sigma_{\mathrm{i}}}\right)^{2} \text { is : }
$$

(A) Gamma distribution
(B) Chi-square distribution
(C) Normal distribution
(D) t-distribution
21. In a test with a standard deviation of 12 and mean 44 a student scored 41 marks. His Z score is :
(A) 0.50
(B) -0.50
(C) 0.25
(D) -0.25
22. Arrange the following steps in process of hypothesis testing in proper sequence :
a. Select the level of significance
b. Setup null and alternative hypothesis
c. Establish the decision rule
d. Perform computation
e. Select test statistics
f. Draw decision
(A) a, b, c, d, e, f
(B) a, b, e, d, c, f
(C) b, a, c, d, e, f
(D) b, a, e, c, d, f
23. The dividing point between the region where the null hypothesis is rejected and the region where it is not rejected is said to be :
(A) Critical region
(B) Significance value
(C) Critical value
(D) Acceptance region
24. Which of the following statements best describes on type I error?
(A) Rejecting a null hypothesis when it is true
(B) Failing to reject a false null hypothesis
(C) Accepting a true alternative hypothesis
(D) Rejecting a false alternative hypothesis
25. For testing of goodness of fit :
(A) The expected frequency should exceed 5
(B) The observed frequency should exceed 5
(C) Both the expected and observed frequency should exceed 5
(D) None of the above conditions are necessary
26. What type of data do you need for a Chi square test?
(A) Ordinal
(B) Interval
(C) Ratio
(D) Categorical
27. A Medical Assistant sampled the blood pressure of 20 randomly selected patients with high blood pressure and after receive a dose of a new medicine, which hypothesis test should she run ?
(A) t-test for single mean
(B) F-test for equality of variances
(C) Independent t -test for difference of means
(D) Paired t-test
28. Which of the following are conditions for using the t -distribution for small sample difference tests?
I. Samples must be independent.
II. Samples must be drawn from normal populations.
III. Samples must be of equal size.
(A) I only
(B) I and II
(C) II only
(D) I and III
29. The complete list of population, where each sampling unit is identified by a number is known as :
(A) Voter list
(B) Sampling frame
(C) A list of random numbers
(D) None of these
30. The relative efficiency of SRSWOR with SRSWR is :
(A) $\frac{\mathrm{N}-\mathrm{n}}{\mathrm{N}-1}$
(B) $\frac{\mathrm{N}-\mathrm{n}}{\mathrm{N}}$
(C) $\frac{\mathrm{n}}{\mathrm{N}}$
(D) $\frac{\mathrm{N}-1}{\mathrm{~N}}$
31. In simple random sampling, the sample mean is :
(A) Always zero
(B) Smaller than population mean
(C) Equal to population mean
(D) Random variable
32. The finite population correction in usual notation is expressed as :
(A) $(\mathrm{N}-\mathrm{n}) / \mathrm{N}$
(B) $1-(\mathrm{n} / \mathrm{N})$
(C) Both (A) and (B)
(D) None
33. Which of the following is not true ?
(A) $\operatorname{Var}\left(\overline{\mathrm{y}}_{\mathrm{st}}\right)_{\mathrm{P}} \geq \operatorname{Var}\left(\overline{\mathrm{y}}_{\mathrm{st}}\right)_{\text {Ney }}$
(B) $\operatorname{Var}(\overline{\mathrm{y}})_{\text {SRS }} \geq \operatorname{Var}\left(\overline{\mathrm{y}}_{\mathrm{st}}\right)_{\mathrm{P}}$
(C) $\left.\operatorname{Var}(\overline{\mathrm{y}})_{\text {SRS }} \leq \operatorname{Var}\left(\overline{\mathrm{y}}_{\mathrm{st}}\right)_{\text {Ney }} \mathrm{b}\right)$
(D) All of these
34. In proportional allocation we have :
(A) $\mathrm{n}_{\mathrm{i}}=\frac{\mathrm{n}}{\mathrm{N}} \mathrm{N}_{\mathrm{i}}$
(B) $n_{i}=n / k$
(C) $n_{i}=N / k$
(D) $\mathrm{n}_{\mathrm{i}}=\frac{\mathrm{n}}{\mathrm{N}_{\mathrm{i}}} \mathrm{N}$
35. Which of the following is an example of systematic sampling ?
(A) A researcher selects every $10^{\text {th }}$ person who enters a shopping mall to participate in a study
(B) A researcher selects a random sample of participants from a list of registered voters
(C) A researcher selects a convenience sample of participants from a local community center
(D) None of these
36. The purpose of stratified sampling is to :
(A) To ensure that the sample is representative of the population
(B) To save time and money by not having to sample the entire population
(C) To obtain a biased sample
(D) To obtain non-random sample
37. For analysing the completely randomised design with t treatments each replicated r times each, with one missing observation, total degree of freedom are :
(A) Rt
(B) $\mathrm{rt}-1$
(C) $\mathrm{rt}-2$
(D) $(\mathrm{r}-1)(\mathrm{t}-1)$
38. If the total degrees of freedom and between treatments degrees of freedom in a completely randomized design are 15 and 4 respectively, the degrees of freedom for error will be :
(A) 11
(B) 14
(C) 18
(D) 19
39. How many factors are involved in a randomized block design?
(A) One
(B) Two
(C) Three
(D) Four
40. In ANOVA, what is the null hypothesis ?
(A) There is no difference between the means of the groups
(B) There is a difference between the means of the groups
(C) The groups are not normally distributed
(D) The sample size is too small to draw a conclusion
41. At every iteration of simplex method, for a minimization problem, a variable in current basis is replaced with another variable that has :
(A) A negative value of $\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}}$
(B) The value of $\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}}=0$
(C) A positive value of $\mathrm{Z}_{\mathrm{j}}-\mathrm{C}_{\mathrm{j}}$
(D) None
42. A set of values of decision variables which satisfies the linear constraints and non-negativity conditions of a LPP is known as :
(A) Solution
(B) Feasible solution
(C) Optimal solution
(D) Unbounded solution
43. The optimal value of the objective function is attained at the points :
(A) Given by intersection of lines representing inequations with axes only
(B) Given by intersection of lines representing inequations with X -axis only
(C) Given by corner points of the feasible region
(D) At the origin
44. If the two constraints do not intersect in the positive quadrant of the graph, then :
(A) The problem is infeasible
(B) The solution is unbounded
(C) One of the constraints is redundant
(D) None of these
45. In fitting a straight line, the value of slope b remains unchanged with the change of :
(A) Scale
(B) Origin
(C) Both (A) and (B)
(D) Neither (A) Nor (B)
46. Secular trend is indicative of long-term variation towards :
(A) Increase only
(B) Either increase or decrease
(C) Decrease only
(D) None of these
47. The trend values in freehand curve method are obtained by :
(A) Equation of straight line
(B) Second degree parabola
(C) Graph
(D) All of these
48. For the given data semi averages for the second half is given by :

Year	2010	2011	2012	2013	2014	2015	2016	2017
Sales	20	16	9	11	40	23	21	12

(A) 14
(B) 22
(C) 23
(D) 24
49. The rate computed by adding the age specific fertility rates of various age groups of child bearing age is known as :
(A) Crude Birth Rate
(B) Net Reproduction Rate
(C) Total Fertility Rate
(D) General Fertility Rate
50. In a given year, the Crude Birth Rate of population of size $1,50,000$ is 12 . The number of births is :
(A) 18
(B) 180
(C) 1800
(D) 18000
51. The population will increase, remains stationary or decreasing according to whether the NRR exceeds, equal or is less than :
(A) 0
(B) 0.5
(C) 1
(D) 1.5
52. The data related to births, deaths, marriage and divorce is called :
(A) Mortality
(B) Morbidity
(C) Vital statistics
(D) Survey
53. If the sample values lie within the control limits and are in a random way, we say that the process is :
(A) Under control
(B) Under warning limits
(C) Out of control
(D) Need to stop the process
54. If a characteristic follows normal distribution, then 3 sigma limits covers \qquad of observations.
(A) 0.27%
(B) 68.26%
(C) 95.44%
(D) 99.73%
55. The chart used to monitor attributes is:
(A) Range chart
(B) C-chart
(C) Mean chart
(D) All of the above
56. Which of the following is a type of control chart used in Statistical Quality Control?
(A) Histogram
(B) Box and Whisker Plot
(C) Scatter Plot
(D) $\overline{\mathrm{X}}$ chart
57. What is estimation in Statistics ?
(A) The process of making a prediction or approximation about a population parameter based on a sample of data
(B) The process of accurately measuring a population parameter
(C) The process of collecting data on a population
(D) The process of analysing data to draw conclusions
58. A confidence interval will be widened if :
(A) The confidence level is decreased and the sample size is increased
(B) The confidence level is increased and the sample size is reduced
(C) The confidence level is increased and the sample size is increased
(D) The confidence level is decreased and the sample size is decreased
59. Sampling distribution is :
(A) A distribution of the population parameters
(B) A distribution of the sample statistics
(C) A distribution of the individual data points in sample
(D) A distribution of the differences between the sample and population parameters
60. A function for estimating a parameter is called as :
(A) Estimate
(B) Estimation
(C) Estimator
(D) None of these

OR

OPTION—2 : MATHEMATICS FOR STATISTICS

1. If

$$
\begin{aligned}
f(x) & =\frac{x}{|x|}, x \neq 0 \\
& =0 x=0
\end{aligned}
$$

then $\lim _{x \rightarrow 0} f(x)=$
(A) 0
(B) 1
(C) -1
(D) None of these
2. What type of discontinuity does the function $f(x)=e^{-\frac{1}{x}}$ have at $x=0$?
(A) Removable discontinuity
(B) Discontinuity of the first kind
(C) Discontinuity of the second kind
(D) None of these
3. Which of the following is true for the function $\mathrm{y}=\log \left(\mathrm{x}+\sqrt{1+\mathrm{x}^{2}}\right)$?
(A) $x y_{2}+y_{1}=0$
(B) $\left(1+x^{2}\right) y_{2}+y_{1}=0$
(C) $\left(1+x^{2}\right) y_{2}+x y_{1}=1$
(D) $\left(1+x^{2}\right) y_{2}+x y_{1}=0$
4. If $u=\cos ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, then $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=$
(A) $\cos u$
(B) $2 \cot u$
(C) $\frac{1}{2} \cot u$
(D) $-\frac{1}{2} \cot u$
5. The angle of intersection of the curves $r=a \theta$ and $r=\frac{a}{\theta}$ is :
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{3}$
(C) $\frac{2 \pi}{3}$
(D) $\frac{\pi}{2}$
6. The angle between the radius vector and the tangent to the curve $\mathrm{r}=\mathrm{a}(1-\cos \theta)$ at any point is equal to :
(A) θ
(B) 2θ
(C) $\frac{\theta}{2}$
(D) $\frac{\theta}{3}$
7. The radius of curvature of the curve $x^{2}+y^{2}=2$ at the point $(1,1)$ is :
(A) $\sqrt{2}$
(B) $\frac{1}{\sqrt{2}}$
(C) 2
(D) $\frac{1}{2}$
8. The number of asymptotes to the curve

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

is :
(A) 2
(B) 1
(C) 4
(D) None
9. Which of the following is/are true for the function $f(x)=\sin x, x \in I=\left[0, \frac{\pi}{2}\right]$?
(A) There is a value of $x \in I$ where $f(x)=\frac{1}{3}$
(B) The maximum value of $\mathrm{f}(\mathrm{x})$ in I is 1
(C) There is a value of $x \in I$ where $f^{\prime}(x)=0$
(D) All of the above
10. The coefficient of x^{n} in the Maclaurin's series of $-\log (1-\mathrm{x})$ is :
(A) $\frac{1}{\mathrm{n}}$
(B) $-\frac{1}{\mathrm{n}}$
(C) $\frac{1}{n!}$
(D) $-\frac{1}{\mathrm{n}!}$
11. If $f(x)=x^{2}-3 x-1, x \in[1,3]$, then the value of the " c " of the Mean Value Theorem is :
(A) 2.75
(B) 2.5
(C) 2.3
(D) 2.1
12. The value of $\lim _{x \rightarrow+\infty}(1+x)^{\frac{1}{x}}$ is :
(A) 0
(B) 1
(C) e
(D) $\frac{1}{\mathrm{e}}$
13. The value of $\int_{0}^{1} \frac{1}{2 e^{x}-1} d x$ is:
(A) $\log 2$
(B) $\log \left(\frac{2 \mathrm{e}-1}{\mathrm{e}}\right)$
(C) 1
(D) 0
14. The integral of $\sqrt{x} \tan ^{-1} \sqrt{x}$ with respect to x is equal to :
(A) $\mathrm{x}^{\frac{3}{2}} \tan ^{-1} \sqrt{\mathrm{x}}-\frac{\mathrm{x}}{2}+\frac{1}{2} \log (1+\mathrm{x})+\mathrm{c}$
(B) $\frac{3}{2}\left[\mathrm{x}^{\frac{3}{2}} \tan ^{-1} \sqrt{\mathrm{x}}-\frac{\mathrm{x}}{2}+\frac{1}{2} \log (1+\mathrm{x})\right]+\mathrm{c}$
(C) $\frac{2}{3}\left[\mathrm{x}^{\frac{3}{2}} \tan ^{-1} \sqrt{\mathrm{x}}-\frac{\mathrm{x}}{2}+\frac{1}{2} \log (1+\mathrm{x})\right]+\mathrm{c}$
(D) $2\left[x^{\frac{3}{2}} \tan ^{-1} \sqrt{x}-\frac{x}{2}+\frac{1}{2} \log (1+x)\right]+c$
15. Which of the following is/are true for 18. Which of the following is a necessary and $I_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$?
(A) $n\left(I_{n-1}+I_{n-2}\right)=1$
(B) $\mathrm{I}_{\mathrm{n}}+\mathrm{I}_{\mathrm{n}-2}=\frac{1}{\mathrm{n}-1}$
(C) $\mathrm{I}_{1}=\log \sqrt{2}$
(D) All of the above
16. What is the value of $\int_{0}^{\infty} \frac{\mathrm{dx}}{\left(1+\mathrm{x}^{2}\right)^{2}}$?
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{2}$
(C) $\frac{3 \pi}{2}$
(D) $\frac{3 \pi}{4}$
17. Which of the following substitutions reduces the differential equation $x y\left(1+x y^{2}\right) \frac{d y}{d x}=1$ to a linear differential equation?
(A) $\frac{1}{\mathrm{x}}=\mathrm{z}$
(B) $\frac{1}{y}=z$
(C) $x y=z$
(D) $y=x^{2}$ sufficient condition for the differential equation $\mathrm{Mdx}+\mathrm{Ndy}=0$ to be exact ?
(A) $\frac{\partial \mathrm{M}}{\partial \mathrm{x}}=\frac{\partial \mathrm{N}}{\partial \mathrm{y}}$
(B) $\frac{\partial \mathrm{M}}{\partial \mathrm{y}}=\frac{\partial \mathrm{N}}{\partial \mathrm{x}}$
(C) Neither (A) Nor (B)
(D) Both (A) and (B)
19. Which of the following is the particular integral of the differential equation $\left(D^{3}-3 D^{2}+4\right) y=e^{2 x}$?
(A) $x^{2} e^{2 x}$
(B) $\frac{x}{6} e^{2 x}$
(C) $\frac{\mathrm{x}^{2}}{6} \mathrm{e}^{2 \mathrm{x}}$
(D) $\frac{\mathrm{x}^{2}}{2} \mathrm{e}^{2 \mathrm{x}}$
20. The complementary function of the differential equation $(3 x+2)^{2} \frac{d^{2} y}{d x^{2}}+3(3 x+2) \frac{d y}{d x}-36 y=3 x^{2}+4 x+1$ is :
(A) $\mathrm{c}_{1}(3 \mathrm{x}+2)^{2}+\frac{\mathrm{c}_{2}}{(3 \mathrm{x}+2)^{2}}$
(B) $\mathrm{c}_{1}(3 \mathrm{x}+2)+\frac{\mathrm{c}_{2}}{(3 \mathrm{x}+2)}$
(C) $\mathrm{c}_{1}(3 \mathrm{x}+2)^{2}+\mathrm{c}_{2}(3 \mathrm{x}+2)$
(D) $\mathrm{c}_{1}(3 \mathrm{x}+2)+\frac{\mathrm{c}_{2}}{(3 \mathrm{x}+2)^{2}}$
21. The general solution of the differential equation $p^{2}+2 p y \cot x=y^{2}$ is given by :
(A) $\frac{y}{1 \pm \cos x}=c$
(B) $y(1 \pm \cos x)=c$
(C) $x(1 \pm \cos y)=c$
(D) $y(1 \pm \sin x)=c$
22. The general solution of the differential equation $\mathrm{p}=\tan \left(\mathrm{x}-\frac{\mathrm{p}}{1+\mathrm{p}^{2}}\right)$ is given by :
(A) $x=\tan ^{-1} p+\frac{p}{1+p^{2}}, y=c-\frac{1}{1+\mathrm{p}^{2}}$
(B) $\mathrm{x}=\mathrm{c}-\frac{1}{1+\mathrm{p}^{2}}, \mathrm{y}=\tan ^{-1} \mathrm{p}+\frac{\mathrm{p}}{1+\mathrm{p}^{2}}$
(C) Neither (A) Nor (B)
(D) Both (A) and (B)
23. The solution of the differential equation

$$
y p+p x-p^{2} x-y=p
$$

is given by :
(A) $y=x+c$
(B) $y=\frac{x^{2}}{2}+c$
(C) $y=c x+\frac{c}{c-1}$
(D) $y=c x$
24. The substitution $X=x^{2}, Y=y^{2}$ reduces the equation $(p x-y)(p y+x)=2 p$ to :
(A) Linear form
(B) Bernoulli's form
(C) Clairut's form
(D) None of these
25. The values of the Bessel's functions $\mathrm{J}_{0}(\mathrm{x})$ and $\mathrm{J}_{1}(\mathrm{x})$ at $\mathrm{x}=0$ are respectively :
(A) 0 and 1
(B) 1 and 0
(C) 0 and 0
(D) 1 and 1
26. Which of the following is true ?
(A) $\mathrm{J}_{2}(\mathrm{x})=\mathrm{J}_{1}(\mathrm{x})-\mathrm{J}_{0}(\mathrm{x})$
(B) $\mathrm{J}_{2}(\mathrm{x})=\mathrm{J}_{1}(\mathrm{x})+\mathrm{J}_{0}(\mathrm{x})$
(C) $J_{2}(x)=\frac{X}{2} J_{1}(x)-J_{0}(x)$
(D) $\mathrm{J}_{2}(\mathrm{x})=\frac{2}{\mathrm{x}} \mathrm{J}_{1}(\mathrm{x})-\mathrm{J}_{0}(\mathrm{x})$
27. Which of the following is not true for the Legendre polynomial $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$?
(A) $\mathrm{P}_{\mathrm{n}}(1)=1$
(B) $\mathrm{P}_{\mathrm{n}}(-\mathrm{x})=(-1)^{\mathrm{n}} \mathrm{P}_{\mathrm{n}}(\mathrm{x})$
(C) $\mathrm{P}_{2 \mathrm{n}+1}(0)=0$
(D) $\quad \mathrm{P}_{2 \mathrm{n}}(0)=\frac{(-1)^{\mathrm{n}}(2 \mathrm{n}) \text { ! }}{(\mathrm{n}!)^{2}}$
28. For $\mathrm{m}=\mathrm{n}, \int_{0}^{1} \mathrm{P}_{\mathrm{m}}(\mathrm{x}) \mathrm{P}_{\mathrm{n}}(\mathrm{x}) \mathrm{dx}=$
(A) 0
(B) 1
(C) $\frac{2}{2 n+1}$
(D) $\frac{2}{\mathrm{n}+1}$
29. The order and the degree of the partial differential equation $\frac{\partial^{2} u}{\partial x \partial y}=\left(\frac{\partial u}{\partial z}\right)^{3}$ are respectively :
(A) 2 and 2
(B) 2 and 1
(C) 1 and 2
(D) 2 and 3
30. The solution of the partial differential equation $\frac{\partial^{2} \mathrm{z}}{\partial \mathrm{x}^{2}}+\mathrm{z}=0$, given that when $\mathrm{x}=0, \mathrm{z}=\mathrm{e}^{\mathrm{y}}$ and $\frac{\partial \mathrm{z}}{\partial \mathrm{y}}=1$, is :
(A) $\mathrm{z}=\mathrm{e}^{\mathrm{x}} \cos \mathrm{y}+\sin \mathrm{y}$
(B) $\mathrm{z}=\mathrm{e}^{\mathrm{y}} \cos \mathrm{y}+\sin \mathrm{x}$
(C) $\mathrm{z}=\mathrm{e}^{\mathrm{y}} \cos \mathrm{x}+\sin \mathrm{x}$
(D) $\mathrm{z}=\mathrm{e}^{\mathrm{x}} \sin \mathrm{y}+\cos \mathrm{x}$
31. The general solution of the partial differential equation $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$ is :
(A) $x^{2}+y^{2}+z^{2}=f(x+y+z)$
(B) $\mathrm{xyz}=\mathrm{f}\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)$
(C) $f\left(x^{2}+y^{2}+z^{2}, \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=0$
(D) $f\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}, x y z\right)=0$
32. The complete solution of partial differential equation $p=e^{q}$ is :
(A) $\mathrm{z}=\mathrm{ax}+\mathrm{y} \log \mathrm{a}+\mathrm{c}$
(B) $\mathrm{z}=\mathrm{ax}+\log \mathrm{y}+\mathrm{c}$
(C) $\mathrm{z}=\mathrm{ax}+\mathrm{by}+\mathrm{c}$
(D) $\mathrm{z}=\mathrm{ay}+\mathrm{x} \log \mathrm{a}+\mathrm{c}$
33. Which of the following sets is not countable?
(A) The set of natural numbers
(B) The set of rational numbers
(C) The set of complex numbers with rational real and imaginary parts
(D) The set of points in the closed interval [1.2]
34. Which of the following is a bounded set ?
(A) The set of natural numbers
(B) The set of rational numbers
(C) The set $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \ldots\right\}$
(D) The set of positive real numbers
35. Which of the following is true ?
(A) Every infinite set has a limit point
(B) Every bounded set has a limit point
(C) Every finite set has a limit point
(D) Every infinite bounded set has a limit point
36. If for any real numbers x, y and $a,|x-a|<\varepsilon,|y-a|<\varepsilon$, then $|x-y|<$
(A) ε
(B) $\frac{\varepsilon}{2}$
(C) 2ε
(D) $a+\varepsilon$
37. For what value of a_{n} the sequence $\left\{a_{n}\right\}$ oscillates infinitely?
(A) $a_{n}=(-1)^{n}$
(B) $\mathrm{a}_{\mathrm{n}}=(-1)^{\mathrm{n}} \mathrm{n}$
(C) $a_{n}=n^{2}$
(D) $a_{n}=-2^{n}$
38. The limit of the sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$, where

$$
a_{n}=1+\frac{1}{3}+\frac{1}{3^{2}}+\ldots \ldots+\frac{1}{3^{n}},
$$

is :
(A) 1
(B) $\frac{1}{3}$
(C) $\frac{2}{3}$
(D) $\frac{3}{2}$
39. For what of a_{n} is the sequence $\left\{a_{n}\right\}$ a monotonic decreasing sequence that is not convergent?
(A) $\mathrm{a}_{\mathrm{n}}=\frac{1}{\mathrm{n}}$
(B) $\mathrm{a}_{\mathrm{n}}=-\mathrm{n}$
(C) $\mathrm{a}_{\mathrm{n}}=\frac{\mathrm{n}+1}{\mathrm{n}}$
(D) $\mathrm{a}_{\mathrm{n}}=\frac{\mathrm{n}}{\mathrm{n}^{2}+1}$
40. If b and c are positive real numbers, then the sequence $\left\{\left(1+\frac{\mathrm{b}}{\mathrm{n}}\right)^{\mathrm{cn}}\right\}$ converges to :
(A) e
(B) e^{b}
(C) e^{c}
(D) e^{bc}
41. Which of the following is not true?
(A) A positive term series either converges or diverges to $+\infty$
(B) The series $\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}}$ is convergent if and only if $\lim _{n \rightarrow \infty}=0$
(C) The series $\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}}$ is convergent if and only if the sequence of its partial sums is convergent
(D) The sum of two convergent series is convergent
42. For what value of x is the series

$$
1+x+x^{2}+x^{3}+\ldots . .
$$

divergent?
(A) $\mathrm{x}<-1$
(B) $\mathrm{x}=-1$
(C) $x \geq 1$
(D) $-1<x<1$
43. For what value of x is the series $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{\sqrt{n^{2}+1}} x^{n}$ convergent?
(A) $\mathrm{x}<1$
(B) $x>1$
(C) $x=1$
(D) None of these
44. Which of the following is true for the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$, where $a_{n}=\frac{(-1)^{n-1}}{n}$ and $\mathrm{b}_{\mathrm{n}}=\frac{(-1)^{\mathrm{n}-1} \mathrm{n}}{2 \mathrm{n}-1}$?
(A) Both $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are convergent
(B) Neither $\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}}$ Nor $\sum_{\mathrm{n}=1}^{\infty} \mathrm{b}_{\mathrm{n}}$ is convergent
(C) $\sum_{n=1}^{\infty} a_{n}$ is convergent but $\sum_{n=1}^{\infty} b_{n}$ is divergent
(D) $\sum_{n=1}^{\infty} a_{n}$ is divergent but $\sum_{n=1}^{\infty} b_{n}$ is convergent
45. Which of the following series is/are uniformly convergent for all real values of x and $0<\mathrm{r}<1$?
(A) $\sum_{n=1}^{\infty} r^{n} \cos n x$
(B) $\sum_{\mathrm{n}=1}^{\infty} \mathrm{r}^{\mathrm{n}} \sin \mathrm{nx}$
(C) $\sum_{n=1}^{\infty} r^{n} \cos n^{2} x$
(D) All of the above
46. Which of the following is true for the sequence $\left\{\mathrm{f}_{\mathrm{n}}\right\}$, where $\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\tan ^{-1}(\mathrm{nx}), \mathrm{x} \geq 0, \mathrm{n}=1,2,3, \ldots$?
(A) $\left\{f_{n}\right\}$ is not uniformly convergent in any interval [a, b], a>0
(B) $\left\{f_{n}\right\}$ is uniformly convergent in $[0, b]$
(C) $\left\{f_{n}\right\}$ is not point-wise convergent in $[0, b]$
(D) None of these
47. Which of the following is not true for the sequence $\left\{\mathrm{f}_{\mathrm{n}}\right\}$, where $\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{nxe} \mathrm{nx}^{-\mathrm{x}}, \mathrm{n}=1,2,3, \ldots$ and $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$?
(A) $\int_{0}^{1} f(x) d x=0$
(B) $\lim _{\mathrm{n} \rightarrow \infty} \int_{0}^{1} \mathrm{f}_{\mathrm{n}}(\mathrm{x}) \mathrm{dx}=\frac{1}{2}$
(C) $\mathrm{f}(\mathrm{x})=0, \forall \mathrm{x}$
(D) $\left\{f_{n}\right\}$ does not converge uniformly to f
48. The radius of convergence of the power series $1+2 x+3 x^{2}+4 x^{3}+\ldots .$. is :
(A) 1
(B) ∞
(C) 0
(D) 2
49. Which of the following is a group ?
(A) The set of natural numbers under addition
(B) The set of real numbers under addition
(C) The set of real numbers under multiplication
(D) The set of complex numbers under multiplication
50. Which of the following conditions makes any multiplicative group G into an Abelian group ?
(A) $\forall \mathrm{a}, \mathrm{b} \in \mathrm{G},(\mathrm{a} \cdot \mathrm{b})^{2}=\mathrm{a}^{2} \cdot \mathrm{~b}^{2}$
(B) Each element of G is idempotent
(C) Each element of G is its own inverse
(D) All of the above
51. What is the order of the symmetric group S_{4} ?
(A) 4
(B) 6
(C) 24
(D) 120
52. The number of elements in the quaternion group is equal to :
(A) 4
(B) 6
(C) 8
(D) 24
53. Which of the following is not true ?
(A) A non-empty subset S of a group G is a subgroup of G if and only if $\forall \mathrm{a}, \mathrm{b} \in \mathrm{S}, \mathrm{ab}^{-1} \in \mathrm{~S}$
(B) For any subgroup S of a group $\mathrm{G}, \mathrm{O}(\mathrm{S}) \mid \mathrm{O}(\mathrm{G})$
(C) For any element a in a group G, $\mathrm{a}^{\mathrm{O}(\mathrm{G})}=\mathrm{e}$
(D) For any two subgroups A and B of $G, A \cup B$ is also a subgroup of G
54. Which of the following is a generator of the cyclic group formed by the $\mathrm{n}^{\text {th }}$ roots of unity?
(A) $\mathrm{e}^{\frac{2 \pi i}{n}}$
(B) $\mathrm{e}^{\frac{\pi i}{n}}$
(C) $\mathrm{e}^{2 \mathrm{n} \pi}$
(D) None of these
55. Which of the following is not true for the multiplicative group $G=\{1,-1, \mathrm{i},-\mathrm{i}\}$, where $\mathrm{i}=\sqrt{-1}$?
(A) G is an abelian group
(B) G is a cyclic group with two generators
(C) $\mathrm{O}(\mathrm{i})=4$
(D) G has no subgroup of order 2
56. The order of the quotient group $\frac{\mathrm{Z}}{\mathrm{N}}$, where Z is the additive group of integers and $\mathrm{N}=\langle 3\rangle$, the subgroup of Z consisting of all multiples of 3 , is :
(A) 1
(B) 2
(C) 3
(D) Infinity
57. Which of the following rings is not free from zero divisors ?
(A) Ring of integers
(B) Ring of all square matrices of order 2
(C) Ring of integers modulo a prime number
(D) Ring of complex numbers
58. If f and g are any two non-zero polynomials over a ring R without proper zero divisors, then degree(f.g) :
(A) is less than $\max (\operatorname{deg} \mathrm{f}, \operatorname{deg} \mathrm{g})$
(B) is less than $\operatorname{deg} f+\operatorname{deg} g$
(C) is equal to $\operatorname{deg} \mathrm{f}+\operatorname{deg} \mathrm{g}$
(D) is equal to deg f. deg g
59. Which of the following is not true ?
(A) Every finite integral domain is a field
(B) Every field is an integral domain
(C) Every ideal of a ring R is a subring of R
(D) The ring of integers is an ideal of the ring of rational numbers
60. Which of the following is true for any element a in a ring R and the subset $S=\{x \in R ; x a=0\}$?
(A) S is a subring of R
(B) S is a right ideal of R
(C) S is an ideal of R
(D) None of these

ROUGH WORK

ENTRANCE TEST-2022
 SCHOOL OF PHYSICAL \& MATHEMATICAL SCIENCES OPTION-1 : STATISTICS OPTION-2: MATHEMATICS FOR STATISTICS

Total Questions : 60
Time Allowed : 70 Minutes

Question Booklet Series A
Roll No. :

Instructions for Candidates :

1. Write your Entrance Test Roll Number in the space provided at the top of this page of Question Booklet and fill up the necessary information in the spaces provided on the OMR Answer Sheet.
2. OMR Answer Sheet has an Original Copy and a Candidate's Copy glued beneath it at the top. While making entries in the Original Copy, candidate should ensure that the two copies are aligned properly so that the entries made in the Original Copy against each item are exactly copied in the Candidate's Copy.
3. All entries in the OMR Answer Sheet, including answers to questions, are to be recorded in the Original
Copy only.
4. Choose the correct / most appropriate response for each question among the options A, B, C and D and darken the circle of the appropriate response completely. The incomplete darkened circle is not correctly read by the OMR Scanner and no complaint to this effect shall be entertained.
5. Use only blue/black ball point pen to darken the circle of correct/most appropriate response. In no case
gel/ink pen or pencil should be used.
6. Do not darken more than one circle of options for any question. A question with more than one darkened response shall be considered wrong.
7. There will be 'Negative Marking' for wrong answers. Each wrong answer will lead to the deduction of 0.25 marks from the total score of the candidate.
8. Only those candidates who would obtain positive score in Entrance Test Examination shall be eligible
for admission.
9. Do not make any stray mark on the OMR sheet.
10. Calculators and mobiles shall not be permitted inside the examination hall.
11. Rough work, if any, should be done on the blank sheets provided with the question booklet.
12. OMR Answer Sheet must be handled carefully and it should not be folded or mutilated in which case it will not be evaluated.
13. Ensure that your OMR Answer Sheet has been signed by the Invigilator and the candidate himself/ herself.
14. At the end of the examination, hand over the OMR Answer Sheet to the invigilator who will first tear off the original OMR sheet in presence of the Candidate and hand over the Candidate's Copy to the candidate.

OPTION—1: STATISTICS

1. The Bowley's coefficient of skewness ranges 5. If the correlation coefficient between two variables between :
(A) 0 and 1
(B) -1 and 0
(C) -3 and 3
(D) -1 and 1
2. A manager of a departmental store wants to place orders of the most economical size of every item. Which measure of central tendency can help him in arriving at the desired size ?
(A) Arithmetic mean
(B) Geometric mean
(C) Mode
(D) Median
3. If a constant is added to every item of a series, then which one of the following measures of dispersion would change ?
(A) Mean deviation about mean
(B) Range
(C) Standard deviation
(D) Coefficient of variation
4. If the geometric mean and harmonic mean of two numbers are respectively 28 and 16 , then the arithmetic mean of these two numbers is :
(A) 49
(B) 28
(C) 22
(D) 16
5. If $\sigma_{x}^{2}=4 \sigma_{y}^{2}$ and $r=0.25$, then the regression coefficient $b_{x y}$ is :
(A) 0.125
(B) 0.0625
(C) 0.50
(D) 1.00
6. For obtaining the regression line of X on Y :
(A) $\mathrm{E}(\mathrm{Y}-\mathrm{a}-\mathrm{bX})^{2}$ is minimized
(B) $\mathrm{E}(\mathrm{Y}-\mathrm{a}-\mathrm{bX})^{2}$ is maximized
(C) $\mathrm{E}(\mathrm{X}-\mathrm{a}-\mathrm{bY})^{2}$ is minimized
(D) $\mathrm{E}(\mathrm{X}-\mathrm{a}-\mathrm{bY})^{2}$ is maximized
7. A die is loaded in such a way that an even number 12. If A and B are any two events, then :
is twice as likely to occur as an odd number. If E is the event that a number less than 4 occurs on a single toss of the die, then $\mathrm{P}(\mathrm{E})$:
(A) $\frac{1}{2}$
(B) $\frac{2}{3}$
(C) $\frac{1}{9}$
(D) $\frac{4}{9}$
8. The probability that a regularly scheduled flight departs on time is $\mathrm{P}(\mathrm{D})=0.83$; the probability that it arrives on time is $\mathrm{P}(\mathrm{A})=0.82$; and the probability that it departs and arrives on time is $P(D \cap A)=0.78$. Find the probability that a plane arrives on time, given that it departed on time :
(A) 0.95
(B) 0.94
(C) 0.50
(D) 0.24
9. In which theory of probability, the outcomes of a random experiment are assumed to be equally likely?
(A) Statistical
(B) Subjective
(C) Classical
(D) Axiomatic
(A) $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{A} \mid \mathrm{B})$
(B) $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B} \mid \mathrm{A})$
(C) $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B} \mid \mathrm{A})$
(D) $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A} \mid \mathrm{B})$
10. If the moment generating function of a random variable X is given by $M_{x}(t)=\frac{3}{3-t}$ then its standard deviation is given by :
(A) $1 / 3$
(B) $2 / 9$
(C) $1 / 5$
(D) $1 / 9$
11. Let X and Y be two independent Poisson variates. Then the conditional distribution of X given $\mathrm{X}+\mathrm{Y}$ is :
(A) Poisson
(B) Geometric
(C) Binomial
(D) Negative binomial
12. The density function of a random variable X is given by $f(x)=\left\{\begin{array}{cc}\frac{1}{2} x & 0<x<2 \\ 0 & \text { otherwise }\end{array}\right.$ The expected value of X is then :
(A) 1
(B) $\frac{1}{2}$
(C) $\frac{3}{4}$
(D) $\frac{4}{3}$
13. The mean of a binomial distribution is 20 and its 20 . For gamma distribution with single parameter : standard deviation is 4 . Then the number of trials is :
(A) 75
(B) 100
(C) 150
(D) 200
14. In an exponential distribution with mean other than unity :
(A) Mean $=(\text { variance })^{2}$
(B) Mean $=2$ variance
(C) Mean = standard deviation
(D) Mean = variance
15. Let Y have uniform distribution over the interval (α, β), then its mean is given by :
(A) $\frac{\beta+\alpha}{2}$
(B) $\frac{\beta-\alpha}{2}$
(C) $\frac{\beta+\alpha}{12}$
(D) $\frac{(\beta-\alpha)^{2}}{12}$
16. If $\mathrm{X} \sim N\left(\mu, \sigma^{2}\right)$, then moment generating function of a standard normal variate is :
(A) $e^{t^{2} / 2}$
(B) $\mathrm{e}^{1 \mathrm{tt}+\sigma^{2} t^{2} / 2}$

-

(C) $e^{i \mu t+\sigma^{2} t^{2} / 2}$
(D) $\mathrm{e}^{\mathrm{i} 1 \mathrm{t}-\mathrm{\sigma}^{2} \mathrm{t}^{2} / 2}$
24. The standard deviation of the sampling distribution 28. The degree of freedom for paired t-test based on n of a statistic is known as :
(A) Standard error
(B) Mean squared error
(A) $\mathrm{n}-2$
(B) $2(\mathrm{n}-1)$
(C) $\mathrm{n}-1$
(D) $2 \mathrm{n}-1$
(D) Coefficient of variation
25. Consider the 2×2 contingency table on two attributes A and B :

$$
\begin{array}{lll}
& \mathrm{A}_{1} & \mathrm{~A}_{2} \\
\mathrm{~B}_{1} & 10 & 20 \\
\mathrm{~B}_{2} & 30 & 40
\end{array}
$$

The value of χ^{2} for testing the independence of attributes A and B is :
(A) 0.85
(B) 0.83
(C) 0.81
(D) 0.79
26. The range of F -variate is :
(A) $-\infty$ to ∞
(B) 0 to ∞
(C) 0 to 1
(D) -1 to 1
27. Goodness of fit of a distribution is tested by :
(A) Z test
(B) F test
(C) t-test
(D) Chi-square test
32. The difference between a sample estimate and the 36. The criterion, which enables us to classify variou population parameter from a complete count is termed as :
(A) Human error
(B) Sampling error
(C) Non-sampling error
(D) Mistakes
33. Stratified sampling is appropriate when the population is :
(A) Heterogeneous
(B) Homogeneous
(C) Finite
(D) Infinite
34. In systematic sampling, the population is 200 and the selected sample size is 50 , then the sampling interval is :
(A) 0.25
(B) 40
(C) 4
(D) 250
35. A population of 108 units is divided into three strata whose sizes are 24,36 and 48 respectively. In proportion allocation, the number of units selected from the second stratum when sample size is 18 , will be :
(A) 4
(B) 6
(C) 8
(D) 9
39. In one way classification, the test statistic F is given 43. For maximization LP model, the simplex method by :
(A) $\frac{\text { Treatment sum of squares }}{\text { Error sum of squares }}$
(B) $\frac{\text { Treatment mean sum of squares }}{\text { Error mean sum of squares }}$
(C) $\frac{\text { Error mean sum of squares }}{\text { Treatment mean sum of squares }}$
(D) $\frac{\text { Raw sum of squares }}{\text { Total sum of squares }}$
40. Local control is used to :
(A) Reduce the error variance
(B) Reduce the number of replications
(C) Reduce the degree of freedom
(D) Decrease the number of plots
41. A feasible solution to an LP problem :
(A) Must satisfy all the problems constraints simultaneously
(B) Must optimize the value of the objective function
(C) Need not to satisfy all constraints, only some of them
(D) Must be a corner point of the feasible region
42. While solving LP Problem graphically, the area bounded by the constraints is known as :
(A) Infeasible region
(B) Feasible region
(C) Unbounded region
(D) Critical region
47. The multiplicative time series model is :
(A) $\mathrm{Y}=\mathrm{T}+\mathrm{S}+\mathrm{C}+\mathrm{I}$
(B) $Y=T \times S \times C \times I$
(C) $Y=a+b X$
(D) $Y=a+b X+c X^{2}$
48. Fisher's method of calculating the index number is based on :
(A) Geometric mean
(B) Arithmetic mean
(C) Harmonic mean
(D) Quartile deviation
49. The number of births per thousand women of child bearing age group is :
(A) Crude birth rate
(B) General fertility rate
(C) Total fertility rate
(D) Gross reproduction rate
50. Natural increase indicates:
(A) Higher mortality
(B) An excess of deaths over births
(C) Higher fertility
(D) An excess of births over deaths
51. The child bearing age in India is :
(A) 15-59 years
(B) 20-29 years
(C) 15-49 years
(D) 14-49 years
57. Let T_{1} be the most efficient estimator of θ with 59. Let $\left(Y_{1}, Y_{2}, Y_{3}\right)$ be a random sample variance σ_{1}^{2} and T_{2} be any other estimator of the same parameter of θ with variance σ_{2}^{2}. The efficiency of T_{2} is :
(A) $\sigma_{1}^{2} / \sigma_{2}^{2}$
(B) $\sigma_{2}^{2} / \sigma_{1}^{2}$ from a population having mean θ. Let $T=\frac{\left(2 Y_{1}+3 Y_{2}+\lambda Y_{3}\right)}{9}$. If T is given to be an unbiased estimator of θ, then the value of λ is :
(A) 1
(B) 2
(C) σ_{1} / σ_{2}
(C) 3
(D) σ_{2} / σ_{1}
(D) 4
58. If $\mathrm{X}_{\mathrm{i}} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$ where σ^{2} is known, then 95% confidence interval for μ based on a sample of size n is :
(A) $\left(\overline{\mathrm{X}} \pm 2.00^{\sigma} / \sqrt{\mathrm{n}}\right)$
(B) $\left(\overline{\mathrm{x}} \pm 2.58^{\sigma} / \sqrt{\mathrm{n}}\right)$
(C) $\left(\overline{\mathrm{X}} \pm 1.96^{\sigma} / \sqrt{\mathrm{n}}\right)$
(D) $\left(\overline{\mathrm{X}} \pm 1.00^{\sigma} / \sqrt{\mathrm{n}}\right)$
60. A statistic is called sufficient for a parameter if it :
(A) Possesses all three criteria of unbiasedness, let consistency and efficiency
(B) Gives among all the statistics, the maximum of the information about parameter
(C) Gives all information about the parameter that is contained in the sample
(D) Gives more information about the parameter than that is contained in the sample

ENTRANCE TEST-2020

SCHOOL OF PHYSICAL \& MATHEMATICAL SCIENCES STATISTICS

Total Questions : 60
Time Allowed : 70 Minutes

Question Booklet Series
Roll No. :

Instructions for Candidates :

1. Write your Entrance Test Roll Number in the space provided at the top of this page of Question Booklet and fill up the necessary information in the spaces provided on the OMR Answer Sheet.
2. OMR Answer Sheet has an Original Copy and a Candidate's Copy glued beneath it at the top. While making entries in the Original Copy, candidate should ensure that the two copies are aligned properly so that the entries made in the Original Copy against each item are exactly copied in the Candidate's Copy.
3. All entries in the OMR Answer Sheet, including answers to questions, are to be recorded in the Original Copy only.
4. Choose the correct / most appropriate response for each question among the options $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D and darken the circle of the appropriate response completely. The incomplete darkened circle is not correctly read by the OMR Scanner and no complaint to this effect shall be entertained.
5. Use only blue/black ball point pen to darken the circle of correct/most appropriate response. In no case gel/ink pen or pencil should be used.
6. Do not darken more than one circle of options for any question. A question with more than one darkened response shall be considered wrong.
7. There will be 'Negative Marking' for wrong answers. Each wrong answer will lead to the deduction of 0.25 marks from the total score of the candidate.
8. Only those candidates who would obtain positive score in Entrance Test Examination shall be eligible for admission.
9. Do not make any stray mark on the OMR sheet.
10. Calculators and mobiles shall not be permitted inside the examination hall.
11. Rough work, if any, should be done on the blank sheets provided with the question booklet.
12. OMR Answer Sheet must be handled carefully and it should not be folded or mutilated in which case it will not be evaluated.
13. Ensure that your OMR Answer Sheet has been signed by the Invigilator and the candidate himself/ herself.
14. At the end of the examination, hand over the OMR Answer Sheet to the invigilator who will first tear off the original OMR sheet in presence of the Candidate and hand over the Candidate's Copy to the candidate.

ENTRANCE TEST-2020

SCHOOL OF PHYSICAL \& MATHEMATICAL SCIENCES STATISTICS

Total Questions : 60
Time Allowed : 70 Minutes

Question Booklet Series
Roll No. :

Instructions for Candidates :

1. Write your Entrance Test Roll Number in the space provided at the top of this page of Question Booklet and fill up the necessary information in the spaces provided on the OMR Answer Sheet.
2. OMR Answer Sheet has an Original Copy and a Candidate's Copy glued beneath it at the top. While making entries in the Original Copy, candidate should ensure that the two copies are aligned properly so that the entries made in the Original Copy against each item are exactly copied in the Candidate's Copy.
3. All entries in the OMR Answer Sheet, including answers to questions, are to be recorded in the Original Copy only.
4. Choose the correct / most appropriate response for each question among the options A, B, C and D and darken the circle of the appropriate response completely. The incomplete darkened circle is not correctly read by the OMR Scanner and no complaint to this effect shall be entertained.
5. Use only blue/black ball point pen to darken the circle of correct/most appropriate response. In no case $\mathrm{gel} /$ ink pen or pencil should be used.
6. Do not darken more than one circle of options for any question. A question with more than one darkened response shall be considered wrong.
7. There will be 'Negative Marking' for wrong answers. Each wrong answer will lead to the deduction of 0.25 marks from the total score of the candidate.
8. Only those candidates who would obtain positive score in Entrance Test Examination shall be eligible for admission.
9. Do not make any stray mark on the OMR sheet.
10. Calculators and mobiles shall not be permitted inside the examination hall.
11. Rough work, if any, should be done on the blank sheets provided with the question booklet.
12. OMR Answer Sheet must be handled carefully and it should not be folded or mutilated in which case it will not be evaluated.
13. Ensure that your OMR Answer Sheet has been signed by the Invigilator and the candidate himself/ herself.
14. At the end of the examination, hand over the OMR Answer Sheet to the invigilator who will first tear off the original OMR sheet in presence of the Candidate and hand over the Candidate's Copy to the candidate.
15. Non negativity condition is an important 8 . Laspeyre's index formula uses the weights of component of LP model because :
(A) Variable value should remain under the control of decision maker
(B) Value of the variable make sense and correspond to real world problems
(C) Variables are interrelated in terms of limited resources
(D) None of the above
16. While solving a LP model graphically, the area bounded by the constraints is called :
(A) Feasible region
(B) Infeasible region
(C) Unbounded solution
(D) None of the above
17. The solution to a transportation problem with m supplies and n destinations is feasible if number of positive allocation are :
(A) $m+n$
(B) $\mathrm{m} \times \mathrm{n}$
(C) $\mathrm{m}+\mathrm{n}-1$
(D) $m+n+1$
18. An assignment problem can be solved by :
(A) Simplex method
(B) Transportation method
(C) Both (A) and (B)
(D) None of the above
19. The component of a time series attached to long term variations is termed as :
(A) Cyclic variation
(B) Secular trend
(C) Irregular variation
(D) All the above
20. A linear trend shows the business movement of a time series towards :
(A) Growth
(B) Decline
(C) Stagnation
(D) All the above
21. Paasche's index number was invented in the year :
(A) 1871
(B) 1874
(C) 1901
(D) 1918 the :
(A) Base year
(B) Current year
(C) Average of weights of a number of years
(D) None of the above
22. In India, the collection of vital statistics started for the first time in :
(A) 1720
(B) 1886
(C) 1946
(D) 1969
23. In post-independence India, the Registration of Births and Deaths Act was passed in :
(A) 1948
(B) 1959
(C) 1969
(D) 1979
24. Total fertility rate provides the basis for :
(A) The expected family size
(B) Population projection
(C) Population increase in a desired period
(D) All the above
25. The probability of dying of a person of age between x and $\mathrm{x}+1$ year is known as :
(A) Age specific death rate
(B) Central mortality rate
(C) Infant mortality rate
(D) None of the above
26. Chance variation in respect of quality control of a product is :
(A) Tolerable
(B) Not effecting the quality of a product
(C) Uncontrollable
(D) All the above
27. The number of mistakes committed by a mechanic in 20 sample of assembled T.V. are 25. The lower control limit for c chart for the given data is :
(A) 10
(B) 1.25
(C) 0.8
(D) None
28. A factory produces 300 articles per day. After inspecting 3000 articles on 30 consecutive days, 270 articles were non-conforming to the specification. The upper control limit for p-chart is:
(A) 0.14
(B) 0.24
(C) 1.14
(D) None
29. The Schewhart control charts are meant :
(A) To detect whether the process is under statistical quality control
(B) To find the assignable cause
(C) To reflect the selection of sample
(D) All the above
30. Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots ., \mathrm{x}_{\mathrm{n}}$ be a random sample from a Bernoulli population $p^{x} q^{n-x}$ for $x=0,1$ and $0<p<1, q=1-p$. A sufficient statistics for p is :
(A) $\prod_{1}^{n} x_{i}$
(B) $\sum_{1}^{n} x_{i}$
(C) $\operatorname{Max}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots . \mathrm{x}_{\mathrm{n}}\right)$
(D) None
31. Factorization theory for sufficiency is known as :
(A) Cramer Rao theorem
(B) Rao Blackwell theorem
(C) Fisher Neyman theorem
(D) Chapman Robins theorem
32. Let $x_{1}, x_{2}, \ldots . ., x_{n}$ be a random sample of size n from a population having $\operatorname{pdf} f(x, \theta)$, where

$$
f(x, \theta),=\frac{1}{\theta} e^{-\frac{x}{\theta}}, 0<x<\infty, 0<\theta<\infty
$$

The unbiased estimator of θ^{2} is :
(A) $\frac{n \mathrm{x}}{\mathrm{n}+1}$
(B) $\frac{\bar{x}^{2}}{n+1}$
(C) $\frac{n \bar{x}^{2}}{n+1}$
(D) None
20. Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots ., \mathrm{x}_{\mathrm{n}}$ be a random sample of n observations from a population with pdf

$$
f(x, \theta),=\theta x^{\theta-1}, 0<x<1,0<\theta<\infty
$$

The ML estimator of θ is :
(A) $-\frac{n}{\sum \log x_{i}}$
(B) $-\frac{n x}{\sum \log x_{i}}$
(C) $-\frac{n x^{2}}{\sum \log x_{i}}$
(D) None
21. The algebraic sum of the deviations of a set of n values from their arithmetic mean is :
(A) 0
(B) 1
(C) n
(D) ∞
22. 10 is the mean of a set of 7 observations and 5 is the mean of a set of 3 observations. The mean of the combine set is :
(A) 6.5
(B) 7.5
(C) 8.5
(D) 15
23. The first of the two samples has 100 items with mean 15 and standard deviation 3 . If the whole group has 250 items with mean 15.6 and standard deviation $\sqrt{13.44}$. The standard deviation of the second group is :
(A) 4
(B) 8
(C) 12
(D) 16

JJ-308-D

24. If mode is ill defined, then Karl-Pearson 28. The Spearman's rank correlation coefficient will coefficient of skewness for a moderately asymmetrical data is given by :
(A) $\frac{(\text { Mean -Median) }}{3 \sigma}$
(B) $\frac{2 \text { Mean }-3 \text { Median }}{\sigma}$
(C) $\frac{3 \text { Mean }-2 \text { Median }}{\sigma}$
(D) $\frac{3(\text { Mean }- \text { Median) }}{\sigma}$
25. The variable X and Y are connected by the equation $A X+B Y+C=0$. If A and B are of opposite sign, then correlation coefficient between X and Y is :
(A) -1
(B) 0
(C) 1
(D) None
26. If r is the correlation coefficient in sample of n pairs of observations, then probable error of correlation coefficient is :
(A) $\frac{1-\mathrm{r}^{2}}{\sqrt{\mathrm{n}}}$
(B) $0.6745 \frac{1-\mathrm{r}^{2}}{\mathrm{n}}$
(C) $0.6745 \sqrt{\frac{1-\mathrm{r}^{2}}{\mathrm{n}}}$
(D) $0.6745 \frac{1-\mathrm{r}^{2}}{\sqrt{\mathrm{n}}}$
27. The correlation coefficient for the regression equations $8 \mathrm{X}-10 \mathrm{Y}+66=0$ and $40 \mathrm{X}-18 \mathrm{Y}-214=0$ is :
(A) ± 0.3
(B) ± 0.6
(C) ± 0.8
(D) None
be maximum when :
(A) Each of the deviations is minimum
(B) Each of the deviations is maximum
(C) Both (A) and (B)
(D) Neither (A) nor (B)
28. Two unbiased coins are tossed. The probability of getting at least one head is :
(A) $\frac{1}{4}$
(B) $\frac{1}{2}$
(C) $\frac{3}{4}$
(D) None
29. The first of the three urns contains 7 white and 10 black balls, second contains 5 white and 12 black balls and the third contains 17 white. A person chooses an urn at random and draws a ball. The ball is white. The probability that the ball comes from the third urn is :
(A) $\frac{15}{87}$
(B) $\frac{21}{87}$
(C) $\frac{51}{87}$
(D) None
30. If $\mathrm{B} \subset \mathrm{A}$, then $\mathrm{P}(\mathrm{A} \cap \overline{\mathrm{B}})$ is equal to :
(A) $P(B)-P(A)$
(B) $P(A)-P(B)$
(C) $\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$
(D) None
31. For any two events A and $B, P(\bar{A} \cap B)$ is given by :
(A) $P(A)-P(A \cup B)$
(B) $\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
(C) $P(B)-P(A \cup B)$
(D) $\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$

JJ-308-D

33. Let X be a continuous random variable with 37. The distribution function of a continuous p.d.f. :

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =\mathrm{ax} ; & & 0 \leq \mathrm{x} \leq 1 \\
& =\mathrm{a} ; & & 1 \leq \mathrm{x} \leq 2 \\
& =-\mathrm{ax}+3 \mathrm{a} ; & & 2 \leq \mathrm{x} \leq 3 \\
& =0 & & \text { elsewhere }
\end{aligned}
$$

The value of the constant a is :
(A) 0
(B) $\frac{1}{4}$
(C) $\frac{1}{2}$
(D) 1
34. Let the random variable X assume the value r with the probability law $P(X=r)=p q^{-1}$; $\mathrm{r}=1,2, \ldots$, then the variance of the variable is :
(A) $\frac{p}{q^{2}}$
(B) $\frac{\mathrm{q}}{\mathrm{p}^{2}}$
(C) $\frac{1}{\mathrm{pq}}$
(D) None
35. The continuous random variable X has the pdf :

$$
\begin{aligned}
f(x) & =\frac{2}{x^{3}} \quad 1<x<\alpha \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

Then $E(2 X-1)$ is equal to :
(A) 1
(B) 2
(C) 3
(D) 4
36. In hyper-geometric distribution H.G(N, $\left.\alpha, n^{\prime}\right)$ if $\mathrm{N} \rightarrow \infty, \frac{\alpha}{\mathrm{N}} \rightarrow \mathrm{p}$, then the hyper-geometric distribution reduces to :
(A) Poisson distribution
(B) Binomial distribution
(C) Geometric distribution
(D) None
uniform distribution of a variable X lying in the interval $(0,1)$ is :
(A) X
(B) $\frac{1}{\mathrm{X}}$
(C) 1
(D) X^{2}
38. If $X \sim N(8,1)$, the probability density function of the variable X is :
(A) $\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{1}{2}(X-8)^{2}}$
(B) $\frac{1}{8 \sqrt{2 \pi}} \mathrm{e}^{-\frac{1}{2}(\mathrm{X}-1)^{2}}$
(C) $\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{1}{2}\left(\frac{x-1}{8}\right)^{2}}$
(D) None
39. The probability density function of beta distribution of first kind with parameters $\alpha, \beta>0$ is :
(A) $\frac{1}{\mathrm{~B}(\alpha, \beta)} \mathrm{x}^{\alpha-\beta}(1-\mathrm{x})^{\alpha-1} ; 0<\mathrm{x}<1$
(B) $\frac{1}{B(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1} ; 0<x<1$
(C) $\frac{1}{\mathrm{~B}(\alpha, \beta)} \mathrm{x}^{\beta-1}(1-\mathrm{x})^{\beta-\alpha} ; 0<\mathrm{x}<1$
(D) None
40. If $X \sim \operatorname{Exp}(1)$, the probability density function of X is :
(A) $1 / \mathrm{e}^{\mathrm{x}}$, for $\mathrm{x}>0$
(B) $e^{x^{2}}$, for $x>0$
(C) e^{x}, for $x>0$
(D) $\mathrm{e}^{-\mathrm{x}}$, for $\mathrm{x}>0$
41. The probability limit for the observed proportion of successes are :
(A) $\mathrm{Q} \pm 3 \sqrt{\frac{\mathrm{PQ}}{\mathrm{n}}}$
(B) $\mathrm{P} \pm 3 \sqrt{\frac{\mathrm{PQ}}{\mathrm{n}}}$
(C) $\mathrm{P} \pm 3 \sqrt{\frac{\mathrm{PQ}}{\mathrm{N}}}$
(D) None
42. Degree of freedom is related to :
(A) Hypothesis under test
(B) No. of observations in a set
(C) No. of independent observations in a set
(D) All the above
43. A test is one sided or two sided depends on:
(A) Null hypothesis
(B) Composite hypothesis
(C) Simple hypothesis
(D) Alternative hypothesis
44. Area of critical region depends on :
(A) Value of the statistics
(B) No. of observations
(C) Size of type I error
(D) Size of type II error
45. In a sample of 8 observations the sum of squares of deviations of the sample values from the sample mean is 84.4 and in the other sample of 10 observations it is 102.6 , the value of the test
statistics is :
(A) 0.8
(B) 0.819
(C) 1.028
(D) 1.057
46. A population is distributed as $\mathrm{N}(5.2,10.24)$. A sample of 576 item has a mean 4.7. The value
of the test statistics of the test statistics to test $H_{0}: \mu=5.2$ is :
(A) -3.75
(B) 1.73
(C) 3.75
(D) None
47. Test of hypothesis $H_{0}: \mu=5$ vs $H_{0}: \mu>=5$ leads to :
(A) One side left tailed test
(B) One side right tailed test
(C) Two tailed test
(D) None of the above
48. A random sample of 27 pairs of observations from a normal population gave a correlation coefficient of 0.6 . The value of the test statistics
is:
(A) 1.75
(B) 2.75
(C) 3.75
(D) None
49. Which of the following is non-probability
sampling?
(A) Quota sampling
(B) Judgment sampling
(C) Both (A) and (B)
(D) Neither (A) nor (B)
50. The estimate of population total Y is :
(A) $\overline{\mathrm{y}}$
(B) $n \bar{y}$
(C) $N \bar{y}$
(D) $N \bar{Y}$
51. An estimator of standard error of \bar{y} is :
(A) $\frac{\mathrm{N}-\mathrm{n}}{\mathrm{nN}} \mathrm{S}$
(B) $\frac{\mathrm{N}-\mathrm{n}}{\mathrm{N}} \mathrm{S}$
(C) $\frac{N-n}{n N} S^{2}$
(D) None

JJ-308-D

22. A combination of a sampling design and an estimator is called
(A) Sampling strategy
(B) Sampling error
(C) Sampling frame
(D) None
23. Standard error of estimate of the population total in stratified sampling is given by :
(A) $N \sqrt{\frac{\sum W_{h}^{2}\left(1-\mathrm{f}_{\mathrm{h}}\right) \mathrm{s}_{\mathrm{h}}^{2}}{\mathrm{n}_{\mathrm{h}}}}$
(B) $N \sqrt{\frac{\sum W_{h}^{2}\left(1-\mathrm{f}_{\mathrm{h}}\right) \mathrm{S}_{\mathrm{h}}^{2}}{\mathrm{n}_{\mathrm{h}}}}$
(C) $N \sqrt{\frac{\sum W_{h}^{2}\left(1-f_{h}\right) S_{h}^{2}}{N_{h}}}$
(D) All the above
24. The reduction in variance from proportional allocation to optimum allocation is caused by the variation between :
(A) $\mathrm{s}_{\mathrm{h}}^{2}$
(B) $\mathrm{S}_{\mathrm{h}}^{2}$
(C) S^{2}
(D) None
25. If fpe is ignored in proportional allocation the $V\left(\bar{y}_{\text {st }}\right)_{\text {prop }}$ is given by :
(A) $\sum_{h} \frac{W_{h} S_{h}^{2}}{n}$
(B) $\sum_{h} \frac{W_{h} S_{h}^{2}}{N}$
(C) $\sum_{h} \frac{W_{h} S_{h}^{2}}{n}$
(D) None
compared to SRS depends on the :
(A) Intra class correlation coefficient
(B) Interclass correlation coefficient
(C) Both (A) and (B)
(D) Neither (A) nor (B)
26. Randomization in an experiment helps to eliminate
(A) Systematic influence
(B) Human biases
(C) Dependence among observations
(D) None of the above
27. Errors in a statistical model are always taken to be :
(A) Independent
(B) Distributed as $\mathrm{N}\left(0, \sigma^{2}\right)$
(C) Both (A) and (B)
(D) Neither (A) nor (B)
28. In a completely randomized design with t treatment and n experimental units, error degree of freedom is equal to:
(A) $\mathrm{t}-\mathrm{n}$
(B) $n-t-1$
(C) $\mathrm{n}-\mathrm{t}+1$
(D) $n-\mathrm{t}$
29. A randomized block design has :
(A) One way classification
(B) Two way classification
(C) Three way classification
(D) No Classification

JJ-308-D

1. For a finite population of size $\mathrm{N}=500$, the population proportion is known to be 0.85 . How large a sample should be taken in order to estimate P with margin of error 0.05 with confidence coefficient 0.95 ?
(A) 196
(B) 174
(C) 141
(D) 125
2. For srswor (N, n), an unbiased variance estimator of Y is:
(A) $\frac{\mathrm{N}-\mathrm{n}}{\mathrm{nN}} \mathrm{S}^{2}$
(B) $\frac{\mathrm{N}(\mathrm{N}-\mathrm{n})}{\mathrm{n}} \mathrm{S}^{2}$
(C) $\frac{\mathrm{nN}}{\mathrm{N}(\mathrm{N}-1)} \mathrm{S}^{2}$
(D) None of the above
3. Sample variance of the $\mathrm{h}^{\text {ti }}$ stratum is given by :
(A) $\sum_{\mathrm{i}=1}^{\mathrm{n}_{\mathrm{h}}} \frac{\left(\mathrm{y}_{\mathrm{hi}}-\overline{\mathrm{y}}_{\mathrm{h}}\right)^{2}}{\mathrm{n}_{\mathrm{h}}-1}$
(B) $\sum_{\mathrm{i}=1}^{\mathrm{n}_{\mathrm{h}}} \frac{\left(\mathrm{Y}_{\mathrm{hi}}-\overline{\mathrm{Y}}_{\mathrm{h}}\right)^{2}}{\mathrm{n}_{\mathrm{h}}-1}$
(C) $\sum_{\mathrm{i}=1}^{\mathrm{N}_{\mathrm{h}}} \frac{\left(\mathrm{Y}_{\mathrm{hi}}-\bar{Y}_{\mathrm{h}}\right)^{2}}{\mathrm{~N}_{\mathrm{h}}-1}$
(D) None
4. Which one is true in stratified sampling?
(A) Variance within stratum is lesser than the variance between stratum.
(B) Variance within stratum is higher than the variance between stratum.
(C) Both (A) and (B)
(D) Neither (A) nor (B)
5. The mean of a systematic sample is more precise than the mean of a simple random sample if and only if:
(A) $\mathrm{s}^{2}>\mathrm{s}_{\text {wsy }}^{2}$
(B) $\mathrm{s}^{2}<\mathrm{s}_{\mathrm{wsy}}^{2}$
(C) $\rho_{\text {wsy }}>1$
(D) None
6. The variance of the systematic sampling is zero, when the intra class correlation coefficient is :
(A) $\frac{1}{1-\mathrm{n}}$
(B) $\frac{1}{\mathrm{~N}-1}$
(C) $\frac{\mathrm{n}}{\mathrm{N}-1}$
(D) None
7. Randomization in an experiment helps to eliminate:
(A) Systematic influence
(B) Human biases
(C) Dependence among observation
(D) All the above
8. Number of replications in an experiment is based on:
(A) The precision required
(B) Experimental material available
(C) Heterogeneity of the experimental material
(D) All the above
9. Local control in experimental design is meant to :
(A) Increase the efficiency of the design
(B) Reduce experimental error
(C) To form homogeneous blocks
(D) All the above
10. A Latin square design possesses :
(A) One way classification
(B) Two way classification
(C) Three way classification
(D) None of the above
11. In linear programming problem:
(A) Objective function, constraints and variables are all linear
(B) Only objective function to be linear
(C) Only constraints to be linear
(D) Only variables to be linear
12. The variable to be determined in LPP are always :
(A) Positive only
(B) Negative only
(C) Non-negative
(D) Non-positive
13. The set of basic optimal solution to an LPP is :
(A) Finite
(B) Convex
(C) Either singleton or infinite
(D) None of the above
14. The solution of transportation problem with m rows and n columns is feasible if number of positive allocation are:
(A) $\mathrm{m}+\mathrm{n}$
(B) $m \times n$
(C) $\mathrm{m}+\mathrm{n}-1$
(D) $\mathrm{m}+\mathrm{n}+1$
15. Most preferred type of average for index number is:
(A) Arithmeticmean
(B) Geometric mean
(C) Harmonic mean
(D) None of the above
16. Laspeyre's index formula uses the weights of the :
(A) Base year
(B) Current year
(C) Average of the weights of a number of years
(D) None of the above
17. If the index number is independent of the units of measurements, then it satisfies :
(A) Time reversal test
(B) Factor reversal test
(C) Unittest
(D) All the above
18. The conditions for the time reversal test to hold good with usual notation is:
(A) $\mathrm{P}_{01} \times \mathrm{P}_{10}=1$
(B) $\mathrm{P}_{10} \times \mathrm{P}_{01}=0$
(C) $\mathrm{P}_{01} / \mathrm{P}_{10}=1$
(D) $\mathrm{P}_{01}+\mathrm{P}_{10}=1$
19. Sampling registration system of births and deaths came into operation in rural area in the year :
(A) 1967°
(B) 1968
(C) 1969
(D) None of the above
20. The ratio of births to the total deaths in a year is called:
(A) Survival rate
(B) Total fertility index
(C) Vital index
(D) Population death rate
21. If P_{1} and P_{2} are the population at an interval of ten years, the population just after five years will be :
(A) $\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right) / 2$
(B) $\sqrt{\mathrm{P}_{1} \times \mathrm{P}_{2}}$
(C) $\frac{1}{2}\left(\frac{1}{\mathrm{P}_{1}}+\frac{1}{\mathrm{P}_{2}}\right)$
(D) $\sqrt{\mathrm{P}_{1}+\mathrm{P}_{2}}$
22. Fertility rate mainly depends on:
(A) Total female population
(B) Total population
(C) Female population of child bearing age
(D) Number of newly born babies

23．Main tools of statistical quality control are ：
（A）Schwartz Charts
（B）Acceptance sampling plan
（C）Both（A）and（B）
（D）Neither（A）nor（B）
24．Variation in the items produced in a factory may be due to：
（A）Chance factor
（B）Assignable causes
（C）Both（A）and（B）
（D）None of the above
25．The relation between expected value of R and S．D． σ with usual constant factors is ：
（A）$E(R)=d_{1} \sigma$
（B） $\mathrm{E}(\mathrm{R})=\mathrm{d}_{2} \sigma$
（C） $\mathrm{E}(\mathrm{R})=\mathrm{D}_{1} \sigma$
（D） $\mathrm{E}(\mathrm{R})=\mathrm{D}_{2} \sigma$
26．Variation due to assignable causes in the product occurs due to ：
（A）Faulty process
（B）Carelessness of operators
（C）Poor quality of raw material
（D）All the above
27．The variance of maximum likelihood estimate for the parameters λ of a Poisson distribution on the basis of sample sizen is ：
（A）λ
（B）λ / n
（C）n / λ
（D）λ / n^{2}
28．Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ be a random sample from a population with pdf：

$$
\mathrm{f}(\mathrm{x}, \theta)=\theta \mathrm{x}^{\theta-1}, 0<\mathrm{x}<1, \theta>0 .
$$

Then $t=\Pi x_{i}$ is ：
（A）Sufficient estimator for θ
（B）Sufficient estimator for $n \theta$
（C）Sufficient estimator forn／θ
（D）None

29．If T_{1} is a MVU for θ and T_{2} is any other unbiased estimator of θ with efficiencye，then the correlation coefficient between T_{1} and T_{2} is given by ：
（A）$\sqrt{\mathrm{e}}$
（B） e
（C） $1 / \mathrm{e}$
（D）None
30．If an estimator T_{n} of population parameter θ converges in probability to θ as $n \rightarrow \infty$ is said to be：
（A）Sufficient
（B）Efficient
（C）Consistent
（D）Unbiased
31．Geometric mean is better than other means when ：
（A）The data are positive as well as negative
（B）The data are in ratios or percentages
（C）The data are binary
（D）The data are on interval
32．The arithmetic mean of two numbers is 6.5 and their G．M．is 6 ，the two numbers are ：
（A） 9,6
（B） 9,5
（C） 7,6
（D） 4,9
33．If A, G and H denote the arithmetic mean，geometric mean and harmonic mean respectively，then ：
（A） $\mathrm{A} \leq \mathrm{G} \leq \mathrm{H}$
（B） $\mathrm{G}^{2}=\mathrm{AH}$
（C） $\mathrm{G}=\mathrm{AH}$
（D）None
34．If each value of a series is multiplied by 10 ，the coefficient of variation will be increased by：
（A） 15%
（B） 10%
（C） 5%
（D）None

35．The standard error of the correlation coefficient is given by：
（A）$\frac{1-r}{\sqrt{n}}$
（B）$\frac{1-r}{n}$
（C）$\frac{1-\mathrm{r}^{2}}{\sqrt{\mathrm{n}}}$
（D）$\frac{1-\mathrm{r}^{2}}{\mathrm{n}}$
36．Regression co－efficient is independent of：
（A）Origin
（B）Scale
（C）Both（A）and（B）
（D）Neither（A）nor（B）
37．Given two lines of regression as $3 \mathrm{X}-4 \mathrm{Y}+8=0$ and $4 X-3 Y=1$ ，the means of X and Y are ：
（A） 4,5
（B） 3,4
（C）$\frac{4}{3}, \frac{5}{4}$
（D）None
38．If $\rho=0$ ，the lines of regression are ：
（A）Coincident
（B）Parallel
（C）Perpendicular to each other
（D）None of the above
39．In a single throw of two dice the probability of getting a total different from 8 is ：
（A）$\frac{5}{36}$
（B）$\frac{12}{36}$
（C）$\frac{25}{36}$
（D）$\frac{31}{36}$

40．One ticket is drawn at random from a bag containing 30 tickets numbered from 1 to 30 ，the probability that it is a multiple of 5 or 7 is ：
（A）$\frac{1}{3}$
（B）$\frac{1}{5}$
（C）$\frac{1}{7}$
（D）$\frac{2}{5}$
41．Two digits are selected at random from the digits 1 to 9 ．If the sum is even，the probability that both are odd is ：
（A）$\frac{1}{6}$
（B）$\frac{5}{8}$
（C）$\frac{5}{18}$
（D）$\frac{8}{18}$
42．If A and B are two events，the probability of occurrence of either A or B is given as ：
（A） $\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
（B）$P(A \cup B)$
（C） $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
（D） $\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$
43．The variance of three tosses of a coin is ：
（A）$\frac{3}{2}$
（B）$\frac{9}{4}$
（C）$\frac{3}{4}$
（D） 3

44．A discrete random variable can take all possible integer values from 1 to k each with a probability $\frac{1}{\mathrm{k}}$ ，the mean of the variable is ：
（A）$\frac{\mathrm{k}+1}{2}$
（B）$\frac{(\mathrm{k}+1)(2 \mathrm{k}+1)}{6}$
（C）$\frac{2 \mathrm{k}+1}{6}$
（D）$\frac{\mathrm{k}^{2}-1}{12}$
45．A dice is thrown at random，the expectation of the number is：
（A）$\frac{1}{2}$
（B）$\frac{1}{6}$
（C）$\frac{2}{7}$
（D）$\frac{7}{2}$
46．The value of p for a binomial random variable X ，if $n=6$ and $9 P(X=4)=P(X=2)$ is ：
（A）$\frac{1}{2}$
（B）$\frac{1}{3}$
（C）$\frac{1}{4}$
（D）$\frac{2}{3}$

47．Themean of distribution $f(x)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{x / \beta}$ ： $0<x<\infty$ ，is ：
（A）α / β
（B）$\alpha \beta$
（C）$\alpha \beta^{2}$
（D）None of the above
48．If we put $\alpha=1$ in the pdf $f(x)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{x / \beta}$ ：
$0<x<\infty$ ，it reduces to ：
（A）Normal distribution
（B）Exponential distribution
（C）Beta distribution of Ist kind
（D）None of the above
49．The mean of the distribution：

$$
f(x)=\frac{\Gamma \alpha+\beta}{\Gamma \alpha \Gamma \beta} x^{\alpha}(1-x)^{\beta} ; 0<x<1:
$$

（A）α / β
（B）$\frac{\alpha+\beta}{\alpha}$
（C）$\frac{\alpha}{\alpha+\beta}$
（D）$\frac{\beta}{\alpha+\beta}$
50．The mgf of the random variable X having pdf $f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}},-\infty<x<\infty$ is ：
（A） $\mathrm{e}^{\mathrm{t}^{2} / 2}$
（B） $\mathrm{e}^{\mathrm{t}^{2}}$
（C） $2 \mathrm{e}^{\mathrm{t}^{2} / 2}$
（D）None

Degree of freedom is related to：
（A）Number of observations in a set
（B）Hypothesis under test
（C）Number of independent observations in a set
（D）None of the above
Area of the critical region depends on ：
（A）Size of type I error
（B）Size of type II error
（C）Value of Statistics
（D）Number of observations
Level of significance is the probability of：
（A）Type I error
（B）Type II error
（C）Both（A）and（B）
（D）Neither（A）nor（B）
Testing $\mathrm{H}_{0}: 100$ vs $\mathrm{H}_{1} \neq 100$ leads to ：
（A）One sided upper tailed test
（B）One sided lower tailed test
（C）Two tailed test
（D）None of the above
55．The degree of freedom for chi－square in case of contingency table of order (4×3) are ：
（A） 12
（B） 9
（C） 8
（D） 6

56．Given the sample statistics，$n_{1}=400, \bar{x}_{1}=24.50$ ， $\mathrm{s}_{1}=2.5 \mathrm{n}_{2}=500, \overline{\mathrm{x}}_{2}=20.00, \mathrm{~s}_{2}=2.0$ ．The value of the test statistics to test $H_{0}: \mu_{1}=\mu_{2}$ ，when $\sigma_{1}^{2}=\sigma_{2}^{2}$ is：
（A） 44.47
（B） 30.00
（C） 8.97
（D）None
57．Given the sample statistics as $n=51, \sigma=8$ and $s=10$ ，the value of the test statistic is ：
（A） 79.69
（B） 64.27
（C） 59.23
（D）None of the above
58．A random sample of 27 pairs of observations from a normal population gives a correlation coefficient 0．42．The value of the test statistics is ：
（A） 2.49
（B） 2.31
（C） 2.12
（D） 1.92
59．A combination of sampling design and an estimator is called：
（A）Sampling strategy
（B）Sampling frame
（C）Both（A）and（B）
（D）Neither（A）nor（B）
60．In srswr (N, n) ，an unbiased estimator of Y is ：
（A）$N \bar{Y}$
（B） Ny
（C） $\mathrm{n} \overline{\mathrm{y}}$
（D）None of the above

Option-(i) : Statistics

1. If the two observations are 5 and -5 , then their harmonic mean is :
(A) 5
(B) 0
(C) -5
(D) None
2. In a class test, 20 students out of 40 passed with mean marks 7.00 and the overall average of class was 6.00 . The average marks of students who failed were:
(A) 2.5
(B) 3.5
(C) 5.00
(D) 6.00
3. The variance of first n natural number is :
(A) $\frac{\left(\mathrm{n}^{2}-1\right)}{12}$
(B) $\frac{\left(\mathrm{n}^{2}+1\right)}{12}$
(C) $\frac{\left(2 \mathrm{n}^{2}-1\right)}{8}$
(D) $\frac{(\mathrm{n}+1)^{2}}{4}$
4. For a negatively skewed frequency distribution curve, the third central moment is :
(A) $\mu_{3}>0$
(B) $\mu_{3}<0$
(C) $\mu_{3}=0$
(D) None of the above
5. The line of regression intersect at the point :
(A) $(0,0)^{*}$
(B) $(1,1)$
(C) (X, Y)
(D) (\bar{X}, \bar{Y})
6. If $\mathrm{r}=0$ the angle θ between the two lines of regression is:
(A) $\theta=\pi$
(B) $\theta=\frac{\pi}{2}$
(C) $\theta=\frac{\pi}{4}$
(D) $\theta=0$
7. The probability of error of correlation coefficient is given by :
(A) $0.6745 \times \frac{\left(1-r^{2}\right)}{n}$
(B) $0.6745 \times \frac{(1-\mathrm{r})^{2}}{\mathrm{n}}$
(C) $0.6745 \times \frac{(1-\mathrm{r})^{2}}{\sqrt{\mathrm{n}}}$
(D) $0.6745 \times \frac{\left(1-\mathrm{r}^{2}\right)}{\sqrt{\mathrm{n}}}$
8. Given the two lines of regression as $8 \mathrm{X}-10 \mathrm{Y}+66=0$ and $40 \mathrm{X}-18 \mathrm{Y}=214$ the mean of X and Y are :
(A) $\overline{\mathrm{X}}=13, \overline{\mathrm{Y}}=17$
(B) $\overline{\mathrm{X}}=8, \overline{\mathrm{Y}}=40$
(C) $\bar{X}=40, \bar{Y}=18$
(D) $\overline{\mathrm{X}}=8, \overline{\mathrm{Y}}=-10$
9. Twelve balls are distributed at random among three boxes. The probability that the first box will contain three balls is :
(A) 0.212
(B) 0.235
(C) 0.245
(D) 0.52
10. If A and B are two events, the probability of event A occur and B does not occur is :
(A) $\mathrm{P}(\mathrm{A} \cap \overline{\mathrm{B}})$
(B) $P(\bar{A} \cap B)$
(C) $\mathrm{P}(\mathrm{A} \cup \overline{\mathrm{B}})$
(D) $P(\bar{A} \cup B)$
11. For any three events A, B and C defined on the sample space S, such that $B \subset C$ and $P(A)>0$, then:
(A) $\mathrm{P}(\mathrm{B} \mid \mathrm{A})<\mathrm{P}(\mathrm{C} \mid \mathrm{A})$
(B) $\mathrm{P}(\mathrm{B} \mid \mathrm{A})>\mathrm{P}(\mathrm{C} \mid \mathrm{A})$
(C) $\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \leq \mathrm{P}(\mathrm{C} \mid \mathrm{A})$
(D) $\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \geq \mathrm{P}(\mathrm{C} \mid \mathrm{A})$
12. If two dice are thrown, the probability that the sum is neither 7 nor 11 is :
(A) $\frac{2}{3}$
(B) $\frac{1}{18}$
(C) $\frac{1}{6}$
(D) $\frac{18}{36}$
13. A continuous random variable X has a probability density function $\mathrm{f}(\mathrm{x})=3 \mathrm{x}^{2} ; 0 \leq \mathrm{x} \leq 1$. If $P(X \leq a)=P(X>a)$, then a is equal to :
(A) $\left(\frac{1}{2}\right)^{\frac{1}{3}}$
(B) $\left(\frac{1}{3}\right)^{\frac{1}{2}}$
(C) $\left(\frac{1}{6}\right)$
(D) None of the above
14. The mean and variance of a binomial distribution are 8 and 4 respectively.
Then $\mathrm{P}(\mathrm{X}=1)$ is equal to :
(A) $\frac{1}{2^{4}}$
(B) $\frac{1}{2^{6}}$
(C) $\frac{1}{2^{8}}$.
(D) $\frac{1}{2^{12}}$
15. In a hyper-geometric distribution ($\mathrm{N}, \mathrm{M}, \mathrm{n}$), if $\mathrm{N} \rightarrow \propto, \frac{\mathrm{M}}{\mathrm{N}} \rightarrow \mathrm{p}$, then the Hyper-geometric distribution reduces to :
(A) Geometric distribution
(B) Poisson distribution
(C) Binomial distribution
(D) None of the above
16. The moment generating function of the geometric distribution with usual notation is :
(A) $\frac{\mathrm{p}}{1-\mathrm{qe}^{\mathrm{t}}}$
(B) $\frac{\mathrm{q}}{1-\mathrm{pe}^{\mathrm{t}}}$
(C) $\frac{\mathrm{p}}{1+\mathrm{qe}^{\mathrm{t}}}$
(D) $\frac{\mathrm{q}}{1+\mathrm{pe}^{\mathrm{t}}}$
17. Subway trains on a certain line run every half hour between mid-night and six in the morning. The probability that a man entering station at a random time during this period is :
(A) $\frac{2}{3}$
(B) $\frac{1}{3}$
(C) $\frac{1}{5}$
(D) $\frac{1}{4}$
18. A linear combination of independent normal variate is:
(A) Uniform variate
(B) Normal variate
(C) Gamma variate
(D) Exponential variate
19. For large value of λ, the gamma distribution $\gamma(\lambda)$ tends to :
(A) Exponential distribution
(B) Beta distribution of first kind
(C) Uniform distribution
(D) Normal distribution
20. The mean of the beta distribution of first kind $\mathrm{B}(\mu, v)$ with usual notation is :
(A) $\frac{\mu}{\mu+v}$
(B) $\frac{v}{\mu+v}$
(C) $\frac{\mu}{\mu-v}$
(D) $\frac{v}{\mu-v}$
21. The probability that a random value of the vector $\mathrm{X}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots ., \mathrm{x}_{\mathrm{n}}\right)$ belongs to the critical region is known as:
(A) Level of significance
(B) Size of type I error
(C) Both (A) and (B)
(D) Neither (A) nor (B)
22. A random sample of 500 apples was taken from a large consignment and 65 were found to be bad. The S.E. of proportion is :
(A) 0.015
(B) 0.012
(C) 0.5
(D) None of the above
23. In two large populations, there are 30 and 25 percent respectively of fair haired people. The value of the test statistics for the difference of proportion is :
(A) 2.46
(B) 2.52
(C) 2.56
(D) 1.74
24. A sample of 900 members has a mean 3.4 cm and s.d. 2.61 cm . The sample has been drawn from a large population of mean 3.25 cm and s.d. 2.61 cm . 95% confidence limit for the population mean is :
(A) (3.5705 and 3.2295)
(B) (3.6251 and 3.2295)
(C) (3.5705 and 3.9225)
(D) (3.6251 and 3.9225)
25. In a sample of 8 observations, the sum of the squares of deviation of the sample values from the sample mean was 84.4 and in the other sample of 10 observations it was 102.6. The value of the test statistic is :
(A) 1.024
(B) 1.057
(C) 1.145
(D) None of the above
26. A random sample of 27 pairs of observations from a normal population gave a correlation coefficient of 0.6 . The value of the test statistic is :
(A) 3.75
(B) 3.54
(C) 3.25
(D) 2.93
27. Degree of freedom for χ^{2} in case of contingency table of order 4×3 are :
(A) 12
(B) 9
(C) 8
(D) 6
28. Given the sample statistics

$$
\begin{array}{lll}
\mathrm{n}_{1}=8, & \overline{\mathrm{x}}_{1}=1234, & \mathrm{~s}_{1}=36 \\
\mathrm{n}_{2}=7, & \overline{\mathrm{x}}_{2}=1036, & \mathrm{~s}_{2}=40
\end{array}
$$

the value of the test statistic to test $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$ is :
(A) 8.37
(B) 8.65
(C) 9.37
(D) 9.45
29. For a simple random sampling without replacement srswor (N, n), the probability of two specified units being selected at any given draw is :
(A) $\frac{\mathrm{n}(\mathrm{n}-1)}{\mathrm{N}(\mathrm{N}-1)}$
(B) $\frac{\mathrm{N}}{\mathrm{n}(\mathrm{n}-1)}$
(C) $\frac{1}{\mathrm{~N}(\mathrm{~N}-1)}$
(D) $\frac{1}{\mathrm{n}(\mathrm{n}-1)}$
30. For an srswor (N, n), the probability that any two specified units are included in the sample is :
(A) $\frac{n(n-1)}{\mathrm{N}(\mathrm{N}-1)}$
33. Under proportional allocation, the size of the sample from each stratum depends on:
(A) Population size
(B) Total sample size
(C) Size of the stratum
(D) All the above
34. In stratified random sampling with srswor in each stratum, an unbiased estimator of $\mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{st}}\right)$ ignoring fpc is :
(A) $\sum \frac{W_{h}^{2} s_{h}^{2}}{n_{h}}$
(B) $\sum \frac{W_{h}^{2} \mathrm{~s}_{h}^{2}}{\mathrm{~N}_{\mathrm{h}}}$
(C) $\sum \frac{W_{h}^{2}}{n_{h}} S_{h}^{2}$
(D) $\sum \frac{\mathrm{W}_{\mathrm{h}}^{2}}{\mathrm{~N}_{\mathrm{h}}} \mathrm{S}_{\mathrm{h}}^{2}$
35. The mean of a systematic sample is more precise than the mean of a simple random sample if and only if:
(A) $\mathrm{S}^{2}<\mathrm{S}_{\text {wsy }}^{2}$
(B) $\mathrm{S}^{2}>\mathrm{S}_{\mathrm{wsy}}^{2}$
(C) $\rho_{\text {wsy }}>1$
(D) None of the above
36. Systematic sampling mean:
(A) Selection of n continuous units
(B) Selection of n largest units
(C) Selection of n middle units in a sequence
(D) Selection of n units situated at equal distance
37. Randomization is a process in which the treatments are allocated to the experimental units :
(A) in a sequence
(B) with equal probability
(C) at the will of the investigator
(D) all the above
38. Local control is a device to maintain :
(A) Homogeneity among blocks
(B) Homogeneity within blocks
(C) Both (A) and (B)
(D) Neither (A) nor (B)
39. Randomized block design is a :
(A) Three restrictional design
(B) Two restrictional design
(C) One restrictional design
(D) No classification
40. In a completely randomized design with t treatments and n experimental units, error degree of freedom is equal to :
(A) $\mathrm{n}-\mathrm{t}$
(B) $\mathrm{n}-\mathrm{t}-1$
(C) $n-t+1$
(D) $\mathrm{t}-\mathrm{n}$
41. Constraints in an LP model represents :
(A) Limitation
(B) Requirements
(C) Balancing limitation and requirements
(D) All the above
42. The distinguishing feature of an $L P$ model is:
(A) Relation among all variables is linear
(B) It has single objective function and constraints
(C) Value of decision variables is non-negative
(D) All the above
43. Which additional variables are added to convert the LPP in the standard form?
(A) Slack variables
(B) Surplus variables
(C) Artificial variables
(D) All the above
44. The solution of a transportation problem with m rows and n columns is feasible if number of positive allocations are :
(A) $m+n$
(B) $\mathrm{m} \times \mathrm{n}$
(C) $\mathrm{m}+\mathrm{n}-1$
(D) $\mathrm{m}+\mathrm{n}+1$
45. IfLaspeyre's price index is 324 and Paasche's price index is 144 , then Fisher's ideal index is :
(A) 180
(B) 216
(C) 234
(D) None of the above
46. Which index satisfies factor reversal test?
(A) Paasche's index
(B) Laspeyre's index
(C) Fisher's ideal index
(D) Walsh's price index
47. The time series analysis helps :
(A) to compare the two or more series
(B) to know the behaviour of business
(C) to make prediction
(D) all the above
48. The best method for finding out seasonal variation is:
(A) Simple average method
(B) Ratio to moving average method
(C) Ratio to trend method
(D) None of the above
49. Vital statistics is mainly concerned with:
(A) Births
(B) Deaths
(C) Marriages
(D) All the above
50. Vital rates are customarily expressed as :
(A) Percentages
(B) Per thousand
(C) Permillion
(D) Pertrillion
51. The death rate of babies under one month is known as :
(A) Infant mortality rate
(B) Maternal mortality rate
(C) Neonatal mortality rate
(D) Foetal death rate
52. A life table is most utilized by:
(A) Life insurance companies
(B) General insurance companies
(C) Employment exchanges
(D) All the above
53. Main tools of statistical quality control are :
(A) Shewhart chart
(B) Acceptance sampling plans
(C) Both (A) and (B)
(D) Neither (A) nor (B)
54. The probability of accepting a lot with fraction defective P_{t} is known as :
(A) Consumer's risk
(B) Producer's risk
(C) Type I error
(D) None of the above
55. Control chart in statistical quality control are meant for:
(A) Describing the pattern of variation
(B) Checking whether the variability in the product is within the tolerance limit or not
(C) Uncovering whether the variability in the product is due to assignable causes or not
(D) All the above
56. R-charts are preferable over σ-charts because :
(A) R and S.D. fluctuate together in case of small sample
(B) R is easily calculable
(C) R-charts are economical
(D) All the above
57. If an estimator θ_{n} of population parameter θ converges in probability to θ as n tends to infinity is said to be :
(A) an unbiased estimator
(B) a consistent estimator
(C) both (A) and (B)
(D) neither (A) nor (B)
58. If $x_{1}, x_{2}, \ldots ., x_{n}$ be a random sample from $N(\mu, 1)$, then $t=\frac{1}{n} \sum x_{i}^{2}$ is an unbiased estimator of :
(A) σ^{2}
(B) $\sigma^{2}+1$
(C) μ^{2}
(D) $\mu^{2}+1$
59. The MLE are :
(A) Consistent
(B) Sufficient
(C) Both (A) and (B)
(D) Neither (A) nor (B)
60. If $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ be a random sample from $\mathrm{N}\left(0, \theta^{2}\right)$, then the maximum likelihood estimator for θ is :
(A) $\sum_{i}^{n} x_{i} / n$
(B) $\sum_{i}^{n} x_{i}^{2} / n$
(C) $\sqrt{\sum_{i}^{n} x_{i}^{2} / n}$
(D) $\sqrt{\sum_{i}^{n} x_{i}^{2}} / n$

Option-(iii) : Mathematics

1. Which of the following is not true for the function

$$
\begin{aligned}
f(x) & =\frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}, x \neq 0 \\
& =0, x=0 ?
\end{aligned}
$$

(A) The left hand limit of $f(x)$ at $x=0$ is -1
(B) The right hand limit of $f(x)$ at $x=0$ is 1
(C) $\mathrm{f}(\mathrm{x})$ has a discontinuity of the first kind at $\mathrm{x}=0$
(D) $f(x)$ has a discontinuity of the second kind at $x=0$
2. Which of the following is the value of the $\mathrm{n}^{\text {th }}$ derivative of $\log (1+x)$ at $x=0$?
(A) $(-1)^{\mathrm{n}} \mathrm{n}$!
(B) $(-1)^{\mathrm{n}-1}(\mathrm{n}-1)$!
(C) $(-1)^{\mathrm{n}-1} \mathrm{n}$!
(D) $(-1)^{n}(\mathrm{n}-1)$!
3. The coefficient of x^{5} in the Maclaurin's expansion of $\tan x$ is:
(A) 1
(B) $\frac{1}{3}$
(C) $\frac{1}{15}$
(D) $\frac{2}{15}$
4. $\lim _{x \rightarrow 1}\left(\frac{x}{x-1}-\frac{1}{\log x}\right)=$
(A) $\frac{1}{2}$
(B) $-\frac{1}{2}$
(C) $\frac{1}{3}$
(D) $-\frac{1}{3}$
5. Which of the following is true for the functions

$$
u=x^{3}-3 x y^{2}, v=3 x^{2} y-y^{3} ?
$$

(A) $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$
(B) $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$
(C) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0=\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}$
(D) All of these
6. The radius of curvature of the circle $p=a(1+\sin \psi)$ is:
(A) $a \sin \psi$
(B) $a \cos \psi$
(C) a
(D) None of these
7. Which of the following is/are an asymptote(s) of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 ?$
(A) $y=\frac{b}{a} x$
(B) $y=-\frac{b}{a} x$
(C) Both (A) and (B)
(D) Neither (A) nor (B)
8. The origin is a node on the curve $y^{2}=a x^{2}+b x^{3}$ if:
(A) $a>0$
(B) $a=0$
(C) $\mathrm{a}<0$
(D) None of these holds
9. The modulus and the amplitude of the complex number ' $\tan \mathrm{x}-\mathrm{i}$ ' are respectively :
(A) $\cos \mathrm{x}, \frac{\pi}{2}-\mathrm{x}$
(B) $\sec \mathrm{x}, \frac{\pi}{2}-\mathrm{x}$
(C) $\sec x, x-\frac{\pi}{2}$
(D) $\cos x, x-\frac{\pi}{2}$
10. The product of all the values of $(1+i)^{\frac{1}{3}}$ is :
(A) $\frac{1}{2}$
(B) $1+\mathrm{i}$
(C) i
(D) $1-\mathrm{i}$
11. If $\mathrm{i}^{\mathrm{i}^{\mathrm{i}--}}=\mathrm{P}+\mathrm{iQ}$ and only principal values are considered, then $\mathrm{P}^{2}+\mathrm{Q}^{2}=$
(A) $\mathrm{e}^{-\mathrm{P} \pi}$
(B) $\mathrm{e}^{-\mathrm{Q} \pi}$
(C) $\mathrm{e}^{-\pi}$
(D) e^{π}
12. If $\sin (P+i Q)=x+i y$, then $x^{2} \operatorname{cosec}^{2} P-y^{2} \sec ^{2} p=$
(A) $\sinh P$
(B) $\cosh \mathrm{Q}$
(C) 1
(D) 0
13. The condition that the line $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ may be a normal to the parabola $y^{2}=4 a x$ is :
(A) $\mathrm{c}=\frac{\mathrm{a}}{\mathrm{m}}$
(B) $\mathrm{am}^{2}+2 \mathrm{am}+\mathrm{c}=0$
(C) $\mathrm{c}=\mathrm{am}^{2}$
(D) $\mathrm{a}^{2} \mathrm{~m}^{2}+2 \mathrm{am}+\mathrm{c}=0$
14. The coordinates of the foci of the ellipse $3 x^{2}+2 y^{2}=6$ are $:$
(A) $\left(\pm \frac{1}{\sqrt{3}}, 0\right)$
(B) $\left(0, \pm \frac{1}{\sqrt{3}}\right)$
(C) $(\pm 1,0)$
(D) $(0, \pm 1)$
15. The eccentricity of the hyperbola $2 x^{2}-3 y^{2}=15$ is :
(A) $\sqrt{\frac{5}{3}}$
(B) $\sqrt{\frac{5}{2}}$
(C) $\sqrt{\frac{3}{2}}$
(D) $\sqrt{\frac{15}{2}}$
16. The centre of the conic

$$
5 x^{2}+6 x y+5 y^{2}-10 x-6 y-3=0
$$

is:
(A) $(0,1)$
(B) $(1,1)$
(C) $(1,0)$
(D) $(0,0)$
17. The curve of intersection of two spheres is :
(A) a straight line
(B) a circle
(C) an ellipse
(D) a hyperbola
18. The locus of the tangent lines drawn from a given point to a sphere is :
(A) a sphere
(B) a cone
(C) a cylinder
(D) None of these
19. The equation of the cylinder whose generators are parallel to the z-axis and pass through the curve of intersection of $x^{2}+y^{2}+z^{2}=1$ and $x+y+z=1$ is:
(A) $x^{2}+y^{2}+x y-x-y=0$
(B) $x^{2}+y^{2}-x y+x+y=0$
(C) $x^{2}+y^{2}-x y+x-y=0$
(D) $x^{2}+y^{2}+x y+x+y=0$
20. The equation $z^{2}=4\left(1+x^{2}+y^{2}\right)$ represents :
(A) an ellipsoid
(B) a cone
(C) a hyperboloid of one sheet
(D) a hyperboloid of two sheets
21. The solution of the differential equation $(x+y+1)^{2} \frac{d y}{d x}=1$ is :
(A) $y=\tan ^{-1}(x+y+1)+c$
(B) $x=\tan ^{-1}(x+y+1)+c$
(C) $\tan (x+y+1)=y+c$
(D) $\cot (x+y+1)=y+c$
22. If P and Q are functions of x only or constants, then the general equation reducible to a linear differential equation is :
(A) $f(y) \frac{d y}{d x}+\operatorname{Pf}^{\prime}(y)=Q$
(B) $f^{\prime}(y) \frac{d y}{d x}+P f(y)=Q$
(C) $\frac{d y}{d x}+P f(y)=Q$
(D) $f(y) \frac{d y}{d x}+P y=Q$
23. The particular integral of the differential equation $\frac{d^{2} y}{d x^{2}}+y=\operatorname{cosec} x$ is :
(A) $\cos x \log \cos x-x \sin x$
(B) $\sin x \log \sin x-x \sin x$
(C) $\sin x \log \sin x-x \cos x$
(D) $\cos x \log \cos x-x \cos x$
24. Which of the following is not true for Bessel functions of different orders?
(A) $\mathrm{J}_{0}^{\prime}(\mathrm{x})=\mathrm{J}_{1}(\mathrm{x})$
(B) $\frac{\mathrm{d}}{\mathrm{dx}}\left[\mathrm{x}^{\mathrm{n}} \mathrm{J}_{\mathrm{n}}(\mathrm{x})\right]=\mathrm{x}^{\mathrm{n}} \mathrm{J}_{\mathrm{n}-1}(\mathrm{x})$
(C) $\mathrm{J}_{\mathrm{n}}^{\prime}(\mathrm{x})+\frac{\mathrm{n}}{\mathrm{x}} \mathrm{J}_{\mathrm{n}}(\mathrm{x})=\mathrm{J}_{\mathrm{n}-1}(\mathrm{x})$
(D) $J_{n}^{\prime}(x)-\frac{n}{x} J_{n}(x)=-J_{n+1}(x)$
25. The index ofnilpotency of the matrix $\left[\begin{array}{lll}0 & 2 & 4 \\ 0 & 0 & 5 \\ 0 & 0 & 0\end{array}\right]$ is:
(A) 2
(B) 3
(C) 4
(D) 5
26. Which of the following is not true for any square matrices $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ of the same order n ?
(A) $\operatorname{Tr}(\mathrm{P}+\mathrm{Q})=\operatorname{Tr}(\mathrm{P})+\operatorname{Tr}(\mathrm{Q})$
(B) $\operatorname{Tr}(\mathrm{PQ})=\operatorname{Tr}(\mathrm{QP})$
(C) $\operatorname{Tr}(\mathrm{PQR})=\operatorname{Tr}(\mathrm{QRP})$
(D) $\operatorname{Tr}(\mathrm{PRQ})=\operatorname{Tr}(\mathrm{PQR})$
27. For what value of ' a ' is $\lambda^{3}-3 \lambda^{2}-7 \lambda+a=0$ the characteristic equation of the matrix $\left[\begin{array}{lll}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{array}\right]$?
(A) $a=5$
(B) $\mathrm{a}=3$
(C) $\mathrm{a}=11$
(D) $\mathrm{a}=-11$
28. Which of the following is not true in general ?
(A) Every elementary matrix is non-singular
(B) Every non-singular matrix is a product of elementary matrices
(C) The inverse of an elementary matrix is an elementary matrix
(D) $\operatorname{Rank}(P Q)=\max (\operatorname{Rank} P, \operatorname{Rank} Q)$
29. Which of the following is not true?
(A) A square matrix of order n is non-singular if and only if its rank is n
(B) The columns of a non-singular matrix are linearly dependent
(C) The columns of a matrix of order $\mathrm{m} \times \mathrm{n}$ are linearly dependent if and only if its rank is less than n
(D) A square matrix of order n has rank n if and only if its columns are linearly independent
30. For what values of ' b ' the equations $x+y+z=1$, $x+2 y+4 z=b, x+2 y+4 z=b^{2}$ have a solution?
(A) $\mathrm{b}=1,2$
(B) $\mathrm{b}=1,3$
(C) $\mathrm{b}=2,3$
(D) $\mathrm{b}=3,4$
31. For what values of ' a ' is the matrix $\left[\begin{array}{cc}a \sin \theta & -a \cos \theta \\ a \cos \theta & a \sin \theta\end{array}\right]$ orthogonal?
(A) $\mathrm{a}=1$
(B) $a=-1$
(C) Both (A) and (B)
(D) Neither (A) nor (B)
32. The matrix $\left[\begin{array}{cc}\alpha+i \beta & -\gamma+i \delta \\ \gamma+i \delta & \alpha-i \beta\end{array}\right]$ is unitaryif:
(A) $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}=1$
(B) $\alpha^{2}+\beta^{2}=\gamma^{2}+\delta^{2}$
(C) $\alpha^{2}+\gamma^{2}=\beta^{2}+\delta^{2}$
(D) $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}=0$
33. The equation whose roots are two times the roots of the equation $x^{7}-5 x^{4}+13 x^{2}-11=0$ is :
(A) $\mathrm{x}^{7}-40 \mathrm{x}^{4}+416 \mathrm{x}^{2}-1408=0$
(B) $x^{7}-416 x^{4}+40 x^{2}-1408=0$
(C) $\mathrm{x}^{7}-1408 \mathrm{x}^{4}+40 \mathrm{x}^{2}-416=0$
(D) $\mathrm{x}^{7}-40 \mathrm{x}^{4}-416 \mathrm{x}^{2}+1408=0$
34. If α, β, γ are the roots of the equation $x^{3}+3 x+2=0$, then the equation whose roots are $(\beta-\gamma)^{2}$, $(\gamma-\alpha)^{2},(\alpha-\beta)^{2}$ is :
(A) $\mathrm{x}^{3}+18 \mathrm{x}^{2}+216 \mathrm{x}+81=0$
(B) $\mathrm{x}^{3}-18 \mathrm{x}^{2}+81 \mathrm{x}-216=0$
(C) $\mathrm{x}^{3}+18 \mathrm{x}^{2}+81 \mathrm{x}+216=0$
(D) $\mathrm{x}^{3}-18 \mathrm{x}^{2}-81 \mathrm{x}-216=0$
35. The equation whose roots are the roots of the equation $x^{3}-6 x^{2}+11 x-6=0$ increased by 1 is :
(A) $x^{3}-9 x^{2}+26 x-24=0$
(B) $x^{3}+9 x^{2}-26 x-24=0$
(C) $x^{3}-9 x^{2}+24 x-26=0$
(D) $x^{3}+9 x^{2}-26 x+24=0$
36. If α, β, γ are the roots of the equation

$$
x^{3}-p x^{2}+q x-r=0
$$

then $\alpha^{-1}+\beta^{-1}+\gamma^{-1}=$
(A) $\frac{p}{r}$
(B) $\frac{\mathrm{q}}{\mathrm{r}}$
(C) $\frac{r}{p}$
(D) $\frac{r}{q}$
37. The sum of the cubes of the roots of the equation $\mathrm{x}^{3}-2 \mathrm{x}^{2}+\mathrm{x}-1=0$ is :
(A) 2
(B) 5
(C) 8
(D) 10
38. The number of imaginary roots of the equation $x^{9}-x^{5}+x^{4}+x^{2}+1=0$ is at least :
(A) 3
(B) 5
(C) 6
(D) 7
39. If α, β, γ are the roots of the equation

$$
a x^{3}+b x^{2}+c x+d=0
$$

then $\left(\alpha+\beta^{\circ}\right)(\beta+\gamma)(\gamma+\alpha)=$
(A) $\frac{a d-b c}{a^{2}}$
(B) $\frac{\mathrm{c}^{2}-2 \mathrm{dc}}{\mathrm{a}^{2}}$
(C) $\frac{\mathrm{b}^{2}-2 a c}{\mathrm{~d}^{2}}$
(D) None of these
40. The number of rational roots of the equation $3 x^{3}-\mathrm{x}^{2}+3 \mathrm{x}-1=0$ is :
(A) 1
(B) 2
(C) 3
(D) None of these
41. Which of the following is not true for any two real numbers x and y ?
(A) $||x|+|y \| \leq|x+y|$
(B) $|x+y|=|x|+|y|$ iff $x y \geq 0$
(C) $|x+y|<|x|+|y|$ iff $x y<0$
(D) $\|x|-|y \| \leq|x-y|$
42. The sequence $\left\{b_{n}\right\}$ defined by

$$
\mathrm{b}_{\mathrm{n}}=\frac{\mathrm{n}}{(\mathrm{n}!)^{\frac{1}{n}}}, \mathrm{n}=1,2,3, \ldots \ldots
$$

converges to:
(A) 0
(B) 1
(C) e
(D) $\frac{1}{\mathrm{e}}$
43. Which of the following series is convergent?
(A) $\sum_{n=1}^{\infty} \frac{1}{n!}$
(B) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+\sqrt{n+1}}$
(C) $\sum_{n=1}^{\infty} \sin \frac{1}{n}$
(D) $\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{1+\frac{1}{n}}}$
44. Which of the following is true for the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n-1}$?
(A) The series is absolutely convergent
(B) The series is divergent
(C) The series is conditionally convergent
(D) None of these
45. Which of the following is true for the function

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =0 \text {, when } \mathrm{x} \text { is rational } \\
& =1 \text {, when } \mathrm{x} \text { is irrational }
\end{aligned}
$$ in any interval $[\mathrm{a}, \mathrm{b}]$?

(A) $\int_{a}^{\frac{b}{b}} f(x) d x=0$
(B) $\int_{a}^{b} f(x) d x=b-a$
(C) $f(x)$ is integrable on $[a, b]$
(D) None of these
46. For any two partitions P_{1} and P_{2} of $[a, b]$ and for any bounded function $f(x)$ defined on $[a, b]$, which of the following is not true?
(A) $L\left(P_{1}, f\right) \leq U\left(P_{2}, f\right)$
(B) $\mathrm{L}\left(\mathrm{P}_{1} \cup \mathrm{P}_{2}, \mathrm{f}\right) \geq \mathrm{L}\left(\mathrm{P}_{1}, \mathrm{f}\right)$
(C) $U\left(P_{1} \cup P_{2}, f\right) \leq U\left(P_{2}, f\right)$
(D) $U\left(\mathrm{P}_{1}, \mathrm{f}\right) \leq \mathrm{U}\left(\mathrm{P}_{1} \cup \mathrm{P}_{2}, \mathrm{f}\right)$
47. The value of $\int_{0}^{3}\{x+[x]\} d x$, where $[x]$ is the greatest integer function, is :
(A) $\frac{5}{2}$
(B) $\frac{1}{2}$
(C) $\frac{15}{2}$
(D) None of these
48. Which of the following is true for the function

$$
\begin{aligned}
f(x) & =2 x \sin \frac{1}{x}-\cos \frac{1}{x}, x \in(0,1] \\
& =0, x=0 ?
\end{aligned}
$$

(A) $f(x)$ is continuous on $[0,1]$
(B) $\mathrm{f}(\mathrm{x})$ is differentiable on $[0,1]$
(C) $f(x)$ is integrable on $[0,1]$
(D) None of these
49. The value of $\int_{0}^{\pi} \int_{0}^{a \sin \theta} r d r d \theta$ is :
(A) $\frac{\pi \mathrm{a}^{2}}{4}$
(B) $\frac{\mathrm{a}^{2}}{6}$
(C) $\frac{5 \pi \mathrm{a}^{3}}{8}$
(D) $\frac{\pi \mathrm{a}^{2}}{6}$
50. Which of the following is not true?
(A) For any constant vector $\longrightarrow, \nabla \cdot \xrightarrow[a]{\longrightarrow}=0$
(B) For any vector function

$$
\xrightarrow[v]{ }, \nabla \times(\nabla \times \xrightarrow[v]{\longrightarrow})=\nabla(\nabla \cdot \xrightarrow[v]{\longrightarrow})+\nabla^{2} \xrightarrow[v]{ }
$$

(C) For any scalar function $\phi, \nabla \times \nabla \phi=\longrightarrow$
(D) For any vector function

$$
\xrightarrow[\mathrm{v}]{ }, \nabla \cdot(\nabla \times \xrightarrow[\mathrm{v}]{ })=0
$$

51. For what value of ' a ' is the function

$$
\begin{aligned}
f(x, y) & =\frac{x^{2}-y^{2}}{x^{2}+y^{2}},(x, y) \neq(0,0) \\
& =a,(x, y)=(0,0)
\end{aligned}
$$

continuous at $(0,0)$?
(A) 0
(B) 1
(C) -1
(D) None of these
52. The saddle points of the function

$$
f(x, y)=x^{3}+y^{3}-3 x-12 y+20
$$

are:
(A) $(1,2),(-1,2)$
(B) $(1,2),(1,-2)$
(C) $(1,-2),(-1,-2)$
(D) $(-1,2),(1,-2)$
53. Which of the following is true for any normal subgroup H of a group G ?
(A) $\mathrm{xH}=\mathrm{Hx}, \forall \mathrm{x} \in \mathrm{G}$
(B) $\mathrm{x}^{-1} \mathrm{~h} x \in \mathrm{H}, \forall \mathrm{x} \in \mathrm{G}, \mathrm{h} \in \mathrm{H}$
(C) $(x H)(y H)=(x y) H, \forall x, y \in G$
(D) All of the above
54. If K is the kernel of a homomorphism from a group G onto the group G^{\prime}, then which of the following is true in general?
(A) $\frac{\mathrm{G}}{\mathrm{K}} \cong \mathrm{G}^{\prime}$
(B) $\frac{\mathrm{G}^{\prime}}{\mathrm{K}} \cong \mathrm{G}$
(C) $\mathrm{K}=\{\mathrm{e}\}$
(D) $\mathrm{K}=\mathrm{G}$
55. Which of the following is/are true for any ring R and for any ideal I of R ?
(A) $\mathrm{f}: \mathrm{R} \rightarrow \frac{\mathrm{R}}{\mathrm{I}}$ defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}+\mathrm{I}, \forall \mathrm{x} \in \mathrm{R}$ is a homomorphism with kernel I
(B) $\mathrm{I}=(0)$ or R if R is a field
(C) If R is an integral domain, then so is $\frac{R}{I}$
(D) All the above
56. For any two ideals U and V of a ring R, which of the following is/are not an ideal(s) of R ?
(A) $U \cup V$
(B) $U \cap V$
(C) $U+V$
(D) All the above
57. Which of the following is not a subspace of the real linear space of all the bounded continuous real valued functions on $[-1,1]$?
(A) The set of all f such that $f(0)=0$
(B) The set of all f such that

$$
\mathrm{f}(\mathrm{x}) \geq 0, \forall \mathrm{x} \in[-1,1]
$$

(C) The set of all f such that f is differentiable
(D) The set of all f such that $\int_{-1}^{1} f(x) d x=0$
58. Which of the following sets in the linear space R^{3} over R is linearly independent?
(A) $\{(2,1,2),(8,4,8)\}$
(B) $\{(1,2,0),(0,3,1),(-1,0,1)\}$
(C) $\{(-1,2,1),(3,0,-1),(-5,4,3)\}$
(D) None of these
59. If P is the real linear space of all polynomials $f(x)$ with real coefficients defined on $[0,1]$ and D and T are two transformations on P defined as $D[f(x)]=\frac{d}{d x} f(x), \forall f(x) \in P$ and $T[f(x)]=x f(x), \forall f(x) \in P$, then which of the following is true?
(A) $. \mathrm{DT}=\mathrm{TD}$
(B) $\mathrm{DT} \neq \mathrm{TD}$
(C) $\mathrm{DT}-\mathrm{TD} \neq \mathrm{I}$, the identity transformation
(D) None of these
60. Which of the following is/are true for any two subspaces L and M of a finite dimensional linear space X over the field F with dual space X^{*} ?
(A) $\operatorname{dim}(L \cup M)=\operatorname{dim}(L)+\operatorname{dim}(M)-\operatorname{dim}(L \cap M)$
(B) $\quad \operatorname{dim}\left(\frac{X}{L}\right)=\operatorname{dim}(X)-\operatorname{dim}(L)$
(C) $\operatorname{dim}(\mathrm{X})=\operatorname{dim}\left(\mathrm{X}^{*}\right)$
(D) All the above
\qquad

ENTRANCE TEST-2017

SCHOOLOF PHYSICAL AND MATHEMATICAL SCIENCES STATISTICS

 Option-(i) Statistics \& Option-(ii) Mathematics

Question Booklet Series

Roll No. :

Instructions for Candidates :

1. Write your Roll Number in the space provided at the top of this page of Question Booklet and fill up the necessary information in the spaces provided on the OMR Answer Sheet.
2. OMR Answer Sheet has an Original Copy and a Candidate's Copy glued beneath it at the top. While making entries in the Original Copy, candidate should ensure that the two copies are aligned properly so that the entries made in the Original Copy against each item are exactly copied in the Candidate's Copy.
3. All entries in the OMR Answer Sheet, including answers to questions, are to be recorded in the Original Copy only.
4. Choose the correct / most appropriate response for each question among the options $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D and darken the circle of the appropriate response completely. The incomplete darkened circle is not correctly read by the OMR Scanner and no complaint to this effect shall be entertained.
5. Use only blue/black ball point pen to darken the circle of correct/most appropriate response. In no case gel/ink pen or pencil should be used.
6. Do not darken more than one circle of options for any question. A question with more than one darkened response shall be considered wrong.
7. There will be 'Negative Marking' for wrong answers. Each wrong answer will lead to the deduction of 0.25 marks from the total score of the candidate.
8. Only those candidates who would obtain positive score in Entrance Test Examination shall be eligible for admission.
9. Do not make any stray mark on the OMR sheet.
10. Calculators and mobiles shall not be permitted inside the examination hall.
11. Rough work, if any, should be done on the blank sheets provided with the question booklet.
12. OMR Answer sheet must be handled carefully and it should not be folded or mutilated in which case it will not be evaluated.
13. Ensure that your OMR Answer Sheet has been signed by the Invigilator and the candidate himself/herself.
14. At the end of the examination, hand over the OMR Answer Sheet to the invigilator who will first tear off the original OMR sheet in presence of the Candidate and hand over the Candidate's Copy to the candidate.

Option-(i): Statistics

1. The most appropriate average to determine the size of oranges on a tree is:
(A) Arithmetic Mean
(B) Median
(C) Mode
(D) Geometric mean
2. The variance of first n natural numbers is:
(A) $\frac{\mathrm{n}^{2}-1}{12}$
(B) $\frac{n+1}{2}$
(C) $\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
(D) $\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$
3. In a positively skewed distribution:
(A) Mean $>$ Mode $>$ Median
(B) Mean $>$ Median $>$ Mode
(C) Mean < Median < Mode
(D) Mean < Mode < Median
4. The first quartile divides a frequency distribution in the ratio:
(A) $4: 1$
(B) $1: 4$
(C) $3: 1$
(D) $1: 3$
5. The coefficient of correlation is independent of change of:
(A) Origin only
(B) Scale only
(C) Origin and scale
(D) None
6. If $\operatorname{cov}(x, y)=\sigma_{x} \sigma_{y}$, then:
(A) $\mathrm{r}=1$
(B) $r=0$
(C) $r=2$
(D) $r=-1$

DAJ-11116-A

7. If $r=0$, the lines of regression are:
(A) Coincide
(B) Perpendicular to each other
(C) Parallel to each other
(D) Do not exist
8. The regression coefficients are b_{2} and b_{1}. Then th correlation Coefficient r is:
(A) $\frac{b_{1}}{b_{2}}$
(B) $\frac{b_{2}}{b_{1}}$
(C) $b_{1} b_{2}$
(D) $\pm \sqrt{b_{1} b_{2}}$
9. What is the chance that non-leap year should have fifty-three Sundays?
(A) $\frac{1}{7}$
(B) $\frac{2}{7}$
(C) $\frac{6}{7}$
(D) $\frac{5}{7}$
10. A problem in Statistics is given to three students $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ whose chances of solving it are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ respectively. The probability that problem will be solved is:
(A) $\frac{1}{3}$
(B) $\frac{3}{4}$
(C) $\frac{1}{24}$
(D) $\frac{1}{4}$
11. If two dice are thrown, what is the probability that the sum is neither 7 nor 11 ?
(A) $\frac{7}{9}$
(B) $\frac{2}{9}$
(C) $\frac{1}{108}$
(D) $\frac{107}{108}$
12. The axiomatic approach to probability was proposed by:
(A) Von-Misses
(B) Laplace
(C) Thomas Bayes
(D) A.N. Kolmogorov
13. Suppose that a game is to be played with a single die assumed fair. In this game a player wins $\$ 20$ if a 2 turns up, $\$ 40$ if a 4 turns up; loses $\$ 30$ if a 6 turns up; while the player neither wins nor loses if any other face turns up. The expected sum of money to be won is:
(A) $\$ 30$
(B) $\$ 12$
(C) $\$ 5$
(D) $\$ 42$
14. The moment generating function of geometric distribution is given by:
(A) $\frac{q}{\left(1-p e^{t}\right)}$
(B) $\frac{q}{\left(1+p e^{t}\right)}$
(C) $\frac{p}{\left(1+q e^{t}\right)}$
(D) $\frac{p}{\left(1-q e^{t}\right)}$
15. The variance of a binomial distribution $\binom{10}{x}\left(\frac{1}{5}\right)^{x}\left(\frac{4}{5}\right)^{10-x} ; x=0,1, \ldots .10$ is:
(A) 1.6
(B) 2
(C) 5
(D) 8
16. A family of distributions which has mean always less than its variance is:
(A) Binomial distribution
(B) Negative binomial distribution
(C) Normal distribution
(D) Hyper-geometric distribution
17. Let $X \sim N(0,1)$ and $Y \sim N(0,1)$ be independent random variables. Then the distribution of X / Y is:
(A) Gamma distribution
(B) Standard Normal distribution
(C) Beta distribution
(D) Standard Cauchy distribution
18. If the moment generating function of a distribution is given by $\left(1-\frac{t}{\lambda}\right)^{-r}$, then mean of the distribution is:
(A) $\frac{\lambda}{r}$
(B) $\frac{r}{\lambda^{2}}$
(C) $\frac{r}{\lambda}$
(D) $\frac{\lambda^{2}}{r}$
19. Let $X \sim \beta_{1}(a, b)$, then variance of the distribution is:
(A) $\frac{a b}{(a+b)^{2}(a+b+1)}$
(B) $\frac{a b}{(a-b)^{2}(a+b+1)}$
(C) $\frac{a b}{(a+b)^{2}(a+b-1)}$
(D) $\frac{a b}{(a-b)^{2}(a+b-1)}$
20. The probability that a normal variate will lie within the range $\mu \pm \sigma$ is:
(A) 0.9973
(B) 0.0027
(C) 0.9544
(D) 0.6826
21. If the sample mean is closer to the population mean, then:
(A) Sampling error is larger
(B) Sampling error is smaller
(C) Sampling error equals to unity
(D) None of these
22. A random sample of 500 pineapples was taken from a large consignment and 65 were found to be bad. The standard error of the proportion of bad ones in a sample of this size is:
(A) 0.013
(B) 0.015
(C) 0.130
(D) 0.150
23. A randomly selected sample of 1,000 college students was asked whether they had ever used the drug Ecstasy. Sixteen percent (16%) of the 1,000 students surveyed said they had. Which one of the following statements about the number 0.16 is correct?
(A) It is a margin of error
(B) It is a population proportion
(C) It is a sample proportion
(D) It is a randomly chosen number
24. In hypothesis testing, a Type -II error occurs when:
(A) The null hypothesis is not rejected when the null hypothesis is true.
(B) The null hypothesis is rejected when the null hypothesis is true.
(C) The null hypothesis is not rejected when the alternative hypothesis is true.
(D) The null hypothesis is rejected when the alternative hypothesis is true.
25. Degrees of freedom for Chi-square in case of contingency table of order 3×4 is:
(A) 12
(B) 9
(C) 8
(D) 6
26. The mode of Chi-square distribution with n d.f is:
(A) $\mathrm{n}-2$
(B) $\mathrm{n}-1$
(C) 2 n
(D) n
27. F-distribution is used for testing:
(A) Goodness of fit
(B) Equality of several means
(C) Independence of attributes
(D) Equality of proportions
28. t-distribution is used to test:
(A) The significance of the difference between two sample means
(B) Equality of population variances
(C) The independence of attributes
(D) Equality of proportions
29. The difference between a sample estimate and the population parameter from a complete count is termed as:
(A) Human error
(B) Sampling error
(C) Non-sampling error
(D) None of the above
30. A selection procedure of a sample having no involvement of probability is known as:
(A) Purposive sampling
(B) Judgement sampling
(C) Subjective sampling
(D) All the above

DAJ-11116-A

31. A complete list of sampling units which represents the population to be covered is known as:
(A) Sample size
(B) Sampling unit
(C) Sampling frame
(D) Sample Space
32. The variance of $11,11,11,11,11$ is:
(A) 0
(B) 1
(C) 11
(D) $\sqrt{11}$
33. Under cost optimum allocation, the allocation of sample size to different strata depends on:
(A) Stratum size
(B) Sampling cost per unit in the stratum
(C) Stratum variability
(D) All of these
34. A sampling technique in which only the first unit is selected with the help of random numbers and the rest get selected automatically according to some predesigned pattern is known as:
(A) Simple random sampling
(B) Stratified sampling
(C) Systematic sampling
(D) Cluster sampling
35. Variance of $\bar{y}_{\text {st }}$ under random sampling, proportional allocation and optimum allocation hold the correct inequality as:
(A) $\mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{St}}\right)_{\mathrm{opt}} \leq \mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{St}}\right)_{\text {prop }} \mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{St}}\right)_{\text {SRS }}$
(B) $V\left(\bar{y}_{S t}\right)_{\text {SRS }} \leq V\left(\bar{y}_{\text {St }}\right)_{\text {prop }} V\left(\bar{y}_{\text {st }}\right)_{\text {opt }}$
(C) $\mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{St}}\right)_{\text {prop }} \leq \mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{St}}\right)_{\text {opt }} \mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{St}}\right)_{\mathrm{SRS}}$
(D) None of these
36. The sampling variance of systematic sample mean $\bar{y}_{S y}$ is given by:
(A) $\quad V\left(\bar{y}_{S y}\right)=\frac{(N-1) S^{2}}{N}-\frac{k(n-1)}{N} S^{2} w_{s y}$
(B) $\quad V\left(\bar{y}_{s y}\right)=\frac{(\mathrm{N}-1) \mathrm{S}^{2}}{\mathrm{~N}}+\frac{\mathrm{k}(\mathrm{n}-1)}{\mathrm{N}} \mathrm{S}^{2} \mathrm{w}_{\mathrm{sy}}$
(C) $V\left(\bar{y}_{s y}\right)^{\prime}=\frac{(\mathrm{N}-1) \mathrm{S}^{2}}{\mathrm{~N}}-\frac{\mathrm{k}(\mathrm{n}+1)}{\mathrm{N}} \mathrm{S}^{2} \mathrm{w}_{\text {sy }}$
(D) None of these
37. Randomization in an experiment helps to reduce:
(A) Systematic influences
(B) Human biases
(C) Dependence among observations
(D) All of these
38. The different procedures whose effects are to be measured and compared are known as:
(A) Experiment
(B) Treatment
(C) Experimental unit
(D) Yield
39. In an analysis of variance problem involving 3 treatments and 10 observations per treatment, $\mathrm{SSE}=$ 399.6. The MSE for this situation is
(A) 133.2
(B) 13.32
(C) 14.8
(D) 30.0
40. A researcher reports an F-ratio with df equal to $(3,36)$ for an independent measure of experiment. How many treatment conditions were compared in this experiment?
(A) 3
(B) 4
(C) 36
(D) 39
41. A complete list of sampling units which represents the population to be covered is known as:
(A) Sample size
(B) Sampling unit
(C) Sampling frame
(D) Sample Space
42. The variance of $11,11,11,11,11$ is:
(A) 0
(B) 1
(C) 11
(D) $\sqrt{11}$
43. Under cost optimum allocation, the allocation of sample size to different strata depends on:
(A) Stratum size
(B) Sampling cost per unit in the stratum
(C) Stratum variability
(D) All of these
44. A sampling technique in which only the first unit is selected with the help of random numbers and the rest get selected automatically according to some predesigned pattern is known as:
(A) Simple random sampling
(B) Stratified sampling
(C) Systematic sampling
(D) Cluster sampling
45. Variance of $\overline{\mathrm{y}}_{\mathrm{st}}$ under random sampling, proportional allocation and optimum allocation hold the correct inequality as:
(A) $\mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{St}}\right)_{\text {opt }} \leq \mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{St}}\right)_{\text {prop }} \mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{St}}\right)_{\text {SRS }}$
(B) $\mathrm{V}\left(\overline{\mathrm{y}}_{\text {St }}\right)_{\text {sRs }} \leq \mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{St}}\right)_{\text {prop }} \mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{st}}\right)_{\text {opt }}$
(C) $\quad \mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{St}}\right)_{\text {prop }} \leq \mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{St}}\right)_{\text {opt }} \mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{St}}\right)_{\text {SRS }}$
(D) None of these
46. The sampling variance of systematic sample mean $\bar{y}_{S y}$ is given by:
(A) $\quad V\left(\overline{\mathrm{y}}_{\mathrm{Sy}}\right)=\frac{(\mathrm{N}-1) \mathrm{S}^{2}}{\mathrm{~N}}-\frac{\mathrm{k}(\mathrm{n}-1)}{\mathrm{N}} \mathrm{S}^{2} \mathrm{w}_{\text {sy }}$
(B) $\quad V\left(\bar{y}_{s y}\right)=\frac{(N-1) S^{2}}{N}+\frac{k(n-1)}{N} S^{2} w_{s y}$
(C) $V\left(\bar{y}_{S y}\right)=\frac{(N-1) S^{2}}{N}-\frac{k(n+1)}{N} S^{2} w_{s y}$
(D) None of these
47. Randomization in an experiment helps to reduce:
(A) Systematic influences
(B) Human biases
(C) Dependence among observations
(D) All of these
48. The different procedures whose effects are to be measured and compared are known as:
(A) Experiment
(B) Treatment
(C) Experimental unit
(D) Yield
49. In an analysis of variance problem involving 3 treatments and 10 observations per treatment, SSE = 399.6. The MSE for this situation is
(A) 133.2
(B) 13.32
(C) 14.8
(D) 30.0
50. A researcher reports an F-ratio with df equal to $(3,36)$ for an independent measure of experiment. How many treatment conditions were compared in this experiment?
(A) 3
(B) 4
(C) 36
(D) 39
51. A basic feasible solution of a LPP is said to be
\qquad if at least one of the basic variables is zero:
(A) Degenerate
(B) Non-degenerate
(C) Infeasible
(D) Unbounded
52. Any feasible solution which optimizes the objective function of the LPP is called its:
(A) Solution
(B) Non-basic variables
(C) Optimal solution
(D) Basic feasible solution
53. While solving the LPP graphically, the area bounded by the constraints is called:
(A) Feasible region
(B) Infeasible region
(C) Unbounded solution
(D) None of these
54. The solution to a transportation problem with m-rows (supplies) and n-columns (destinations) is feasible if the number of possible allocations are:
(A) $m+n$
(B) $m \times n$
(C) $\mathrm{m}+\mathrm{n}+1$
(D) $\mathrm{m}+\mathrm{n}-1$
55. The sales of a Departmental store on Eid and Christmas are associated with the components of a time series:
(A) Secular trend
(B) Seasonal variation
(C) Cyclical variation
(D) Irregular variation
56. Given that annual trend equation $Y_{c}=40+2 \mathrm{X}$ with origin as 1985; X-units $=6$ months and Y -unit $=$ annual production of computers. The monthly trend equation is:
(A) $\mathrm{Y}_{\mathrm{C}}=3.33+0.03 \mathrm{X}$
(B) $\mathrm{Y}_{\mathrm{C}}=3.33+0.01 \mathrm{X}$
(C) $\mathrm{Y}_{\mathrm{C}}=3.39+0.02 \mathrm{X}$
(D) $\mathrm{Y}_{\mathrm{C}}=3.33+0.21 \mathrm{X}$
57. Which of the following satisfies the time reversal test?
(A) Walsh price index
(B) Paasche's index
(C) Laspeyre's index
(D) Fisher's ideal formula
58. The arithmetic mean of Laspeyre's index and Paasche's index is:
(A) Fisher's ideal method
(B) Kelley's method
(C) Bowley Dorfish Mețhod
(D) Marshall Egdeworth method
59. The child bearing age in India is:
(A) 15-29 years
(B) 15-39 years
(C) 15-34 years
(D) 15-49 years
60. The registration of births, deaths and marriages are:
(A) Fancy of society
(B) Legal documents
(C) Part of medical research
(D) All of these
61. The sum of age specific fertility rate is known as:
(A) Total fertility rate
(B) General fertility rate
(C) Crude birth rate
(D) Net reproduction rate
62. For mathematical manipulations, the radix is:
(A) 1000
(B) 100
(C) 1
(D) Either (A) or (B)
63. Assignable causes:
(A) are not as important as natural causes
(B) are causes of variation that can be identified and removed
(C) are also referred to as chance causes
(D) are within the limits of a control chart
64. Central tendency of a process is monitored in:
(A) R- chart
(B) C- chart
(C) S- chart
(D) X - chart
65. The ierm LCD stands for:
(A) Liquefy Crystal Display
(B) Liquid Crystal Display
(C) Liquid Card Display
(D) Liquid Clear Display
66. A chart that controls the total number of defects divided by the sample size is known as:
(A) R chart
(B) np chart
(C) C chart
(D) p chart
67. A property of a point estimator that occurs whenever larger sample sizes tend to provide point estimates closer to the population parameter is known as:
(A) Efficiency
(B) Unbiased sampling
(C) Consistency
(D) Relative estimation
68. The purpose of statistical inference is to provide information about the:
(A) Sample based upon information contained in the population
(B) Population based upon information contained in the sample
(C) Population based upon information contained in the population
(D) Mean of the sample based upon the mean of the population
69. Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ be a random sample from $\mathrm{N}(\mu, 1)$, then the unbiased estimator of $\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}$ is
(A) $\mu-1$
(B) $\mu^{2}-1$
(C) $\mu+1$
(D) $\mu^{2}+1$
70. Let $\mathrm{X} \sim \mathrm{U}(0, \theta)$, then sufficient estimator for θ is:
(A) $\sum_{i=1}^{n} \mathrm{X}_{\mathrm{i}}$
(B) $\prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}$
(C) $\max \left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \ldots \ldots ., \mathrm{X}_{\mathrm{n}}\right)$
(D) $\min \left(X_{1}, X_{2}, \ldots, X_{n}\right)$

Option-(ii) : Mathematics

1. The value of the limit $\lim _{x \rightarrow 0}\left[1+\frac{x}{a}\right]^{a / x}$ is :
(A) $e^{a / x}$
(B) e^{ax}
(C) $\log a$
(D) e
2. For what value of $k, \lim _{x \rightarrow 0} \frac{|x|}{x^{2}+2 x}=k$?
(A) $-\frac{1}{2}$
(B) $\frac{1}{2}$
(C) zero
(D) k does not exist
3. The points of discontinuity of the function $f(x)=\frac{\log x}{x-1}$ are :
(A) $x=1,0$
(B) $x \geq 0, x=1$
(C) $\mathrm{x} \leq 0, \mathrm{x}=1$
(D) Everywhere continuous
4. For $f(x) e^{x}$ and $g(x)=e^{-x}$, the value of c in the interval $[a, b]$ using Cauchy's Mean value theorem is :
(A) ab
(B) $\frac{\mathrm{ab}}{2}$
(C) $a+b$
(D) $\frac{a+b}{2}$
5. For the relation, $y=x-x^{2}$, the rate of change of y^{2} with respect to x^{2} is :
(A) $1-3 x+2 x^{2}$
(B) $1+3 x-2 x^{2}$
(C) $1+2 x-3 x^{2}$
(D) $1-2 x+3 x^{2}$
6. The expansion of e^{x} in the ascending powers of $(x-1)$ is :
(A) $1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$
(B) $e\left[1+(x-1)+\frac{(x-1)^{2}}{2!}+\frac{(x-1)^{3}}{3!}+\ldots.\right]$
(C) $e\left[1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \cdot\right]$
(D) $1+(x-1)+\frac{(x-1)^{2}}{2!}+\frac{(x-1)^{3}}{3!}+\ldots$
7. For $u=x^{3}+y^{3}+z^{3}+3 x y z$, the value of $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}$ is :
(A) u
(B) $3 u$
(C) $6 u$
(D) zero
8. The envelope of the ellipse $x=a \sin (\theta-\alpha), y=b$ $\cos \theta$ is \qquad ; where α is a parameter.
(A) $\mathrm{x}^{2}=\mathrm{a}^{2}$
(B) $\quad x^{2}=0$
(C) $x=a$
(D) does not exist
9. The partial derivative of $f(x, y, z)=e^{1-x \cos y}+z e^{\frac{1}{\left(1+y^{2}\right)}}$ with respect to x at $(1,0, \pi)$ is :
(A) -1
(B) $-\frac{1}{\mathrm{e}}$
(C) zero
(D) π
10. The angle between the radius vector and the tange of the curve $r=a(1+\sin \theta)$ at $\theta=\pi / 6$
(A) $\pi / 2$
(B) $\pi / 3$
(C) $\pi / 4$
(D) $\pi / 6$

DAJ-11116-A

11. The equation of the tangent to the curve $y=x^{3}$ at the point $(2,8)$ is :
(A) $\mathrm{Y}=12 \mathrm{X}+16$
(B) $Y=16 X-12$
(C) $\mathrm{Y}=12 \mathrm{X}-16$
(D) $\mathrm{Y}=16 \mathrm{X}+12$
12. The function $\frac{\log x}{x}(x>0)$ has :
(A) maximum value $=e$
(B) minimum value $=\mathrm{e}$
(C) maximum value $=1 / e$
(D) minimum value $=1 / \mathrm{e}$
13. The radius of curvature at any point of the tractrix $\mathrm{s}=\mathrm{c} \operatorname{logsec} \psi$ is :
(A) $c \tan \psi$
(B) $\mathrm{c} \sec \psi$
(C) $\mathrm{c} \cos \psi$
(D) $\mathrm{c} \cot \psi$
14. If m_{1} and m_{2} represent the slopes of tangent and normal to the ellipse $4 x^{2}+3 y^{2}=24$ at the point $(\sqrt{3}, 2)$, then :
(A) $\mathrm{m}_{1}=-\frac{\sqrt{3}}{2} \& \mathrm{~m}_{2}=\frac{2}{\sqrt{3}}$
(B) $m_{1}=-\frac{2}{\sqrt{3}} \& m_{2}=\frac{\sqrt{3}}{2}$
(C) $\mathrm{m}_{1}=-\frac{2}{\sqrt{3}} \& \mathrm{~m}_{2}=\frac{2}{\sqrt{3}}$
(D) $m_{1}=\frac{2}{\sqrt{3}} \& m_{2}=\frac{\sqrt{3}}{2}$
15. The difference of the focal distances of any point on the hyperbola is
I. constant
II. equal to the length of transverse axis
III. zero
(A) only I is correct
(B) only II is correct
(C) I and II are correct
(D) only III is correct
16. The angle between the planes $2 x-y+z=6$ and $x+y+2 z=7$ is :
(A) 30°
(B) 45°
(C) 60°
(D) 90°
17. The value of $\frac{(\cos 5 \theta-i \sin 5 \theta)^{2}(\cos 7 \theta+i \sin 7 \theta)^{-3}}{(\cos 4 \theta-i \sin 4 \theta)^{9}(\cos \theta+i \sin \theta)^{5}}$ is
(A) zero
(B) -1
(C) 1
(D) i
18. The value of $\log (-5)$ is equal to :
(A) $-\log 5+\pi \mathrm{i}$
(B) $-\log 5+2 \pi \mathrm{i}$
(C) $\log 5+2 \pi i$
(D) $\quad \log 5+\pi i$
19. For what value of $k, \log (-i)=\frac{k \pi}{2}$?
(A) 1
(B) -1
(C) i
(D) -i
20. The pair of equations of the tangent to the parabol $y^{2}=4 a x$ at the ends of its latus rectum are:
(A) $y= \pm(x+a)$
(B) $y=x \pm a$
(C) $y= \pm 2(x+a)$
(D) $y=2(x \pm a)$
21. Let (α, β) represent the centre and radius of th sphere $2 x^{2}+2 y^{2}+2 z^{2}-2 x+4 y-6 z=1$, then
(A)
$\alpha=\left(1,-\frac{1}{2}, 3\right), \beta=2$
(B)

$$
\alpha=\left(\frac{1}{2},-1, \frac{3}{2}\right), \beta=2
$$

(C) $\alpha=\left(\frac{1}{2},-1, \frac{3}{2}\right), \beta=4$
(D) $\alpha=\left(1,-\frac{1}{2}, 3\right), \beta=4$
22. The necessary and sufficient conditon that the cone $a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 h x y=0$ may have three mutually perpendicular generators is :
(A) $\mathrm{f}+\mathrm{g}+\mathrm{h}=0$
(B) $\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{f}+\mathrm{g}+\mathrm{h}$
(C) $a+b+c=0$
(D) $a+b+c=1$
23. The plane $l x+m y+n z=p$ touches the conicoid $a x^{2}+b y^{2}+c z^{2}=1$ if:
(A) $\frac{l^{2}}{\mathrm{a}}+\frac{\mathrm{m}^{2}}{\mathrm{~b}}+\frac{\mathrm{n}^{2}}{\mathrm{c}}=\mathrm{p}^{2}$
(B) $p^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=\mathrm{p}^{2}$
(C) $\frac{\mathrm{a}}{\mathrm{l}^{2}}+\frac{\mathrm{b}}{\mathrm{m}^{2}}+\frac{\mathrm{c}}{\mathrm{n}^{2}}=\mathrm{p}^{2}$
(D) $\frac{l}{\mathrm{a}}+\frac{\mathrm{m}}{\mathrm{b}}+\frac{\mathrm{n}}{\mathrm{c}}=\mathrm{p}$
24. The polar plane of the point $(2,-3,4)$ with respect to the conicoid $x^{2}+2 y^{2}+z^{2}=4$ is :
(A) $2 x-6 y+4 z=-17$
(B) $x+2 y+z=17$
(C) $x-3 y+2 z=2$
(D) $x+2 y+z=0$
25. For the function

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x y\left(x^{2}-y^{2}\right) ;}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\
0 ; & (x, y)=(0,0)
\end{array}\right.
$$

the value of $f_{y x}$ at $(0,0)$ is :
(A) -1
(B) zero
(C) 1
(D) $f_{y x}$ do not exist
26. Let $f(x, y)=\left\{\begin{array}{cl}x y \tan \frac{y}{x} ; & (x, y) \neq(0,0) \\ 0 ; & (x, y)=(0,0)\end{array}\right.$ then
(A) $x f_{x}+y f_{y}+x y=2 f$
(B) $x f_{y}+y f_{x}=2 f$
(C) $\quad x f_{x}+y f_{y}=2 f$
(D) $x f_{x}-y f_{y}=2 f$
27. The solution of the differential equation $y^{\prime \prime}+y=0$ satisfying $y(0)=1, y\left(\frac{\pi}{2}\right)=2$ is
(A) $\cos x+2 \sin x$
(B) $\cos x+\sin x$
(C) $2 \cos x+\sin x$
(D) $2(\cos x+\sin x)$
28. If $\sin x$ is the integrating factor of $y^{\prime}+P y=Q$, then P is equal to :
(A) $\sin x$
(B) $\quad \log \sin x$
(C) $\quad \log \cos x$
(D) $\cot x$
29. The solution of $\frac{d^{2} y}{d x^{2}}=0$ represents a :
(A) point
(B) straight line
(C) parabola
(D) circle
30. The number of generators in an infinite cyclic group of Integers is :
(A) 1
(B) 2
(C) finitely many
(D) Infinity
31. In a group G , if every element is its own inverse, then G is :
(A) cyclic
(B) finite
(C) abelian

(D) non-abelian
32. Let a and b are two elements of a group G such that order of a is 5 and $a^{3} b=b a^{3}$, then
(A) $\mathrm{ab}=\mathrm{ba}$
(B) $\mathrm{a}=\mathrm{b}^{-1}$
(C) $\mathrm{O}(\mathrm{b})=3$
(D) None of these
33. If $\mathrm{C}(\mathrm{G})$ and $\mathrm{N}(\mathrm{a})$ respectively denote centre of a group G and Normalizer of an element a in G , then :
(A) $\mathrm{C}(\mathrm{G})=\mathrm{N}(\mathrm{a})$
(B) $\quad \mathrm{N}(\mathrm{a}) \subseteq \mathrm{C}(\mathrm{G})$
(C) $\mathrm{C}(\mathrm{G}) \subseteq \mathrm{N}(\mathrm{a})$
(D) $\mathrm{C}(\mathrm{G}) \neq \mathrm{N}(\mathrm{a})$
34. If $a=\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $b=\left(\begin{array}{lll}1 & 5 & 7\end{array}\right)$ are two permutations, then $\mathrm{a}^{-1} \mathrm{ba}$ is equal to :
(A) (1759)
(B) (3795)
(C) (3791)
(D) None of these
35. In Z_{18}, the subgroups $\left.<3\right\rangle$ and $\langle 15\rangle$ are associated as
(A) $<3\rangle \subseteq<15\rangle$
(B) $\langle 15\rangle \subseteq\langle 3\rangle$
(C) $\langle 15\rangle=\langle 3\rangle$
(D) None of these
36. Which of the following statements is incorrect?
(A) Only ideals of a field F are (0) and F itself
(B) Every field is a division ring
(C) A finite integral domain is a field
(D) None of these
37. Find values of b such that the vectors $\langle-11, b, 2\rangle$ and $\left\langle b, b^{2}, b\right\rangle$ are orthogonal :
(A) $0,3,-3$
(B) $0,11,3$
(C) $0,-11,2$
(D) $0,2,-2$
38. Which of the following statements is incorrect?
(A) A monotonic sequence is never oscillatory.
(B) If a sequence $\left\{a_{n}\right\}$ converges to l, then $\left\{\left|a_{n}\right|\right\}$ converges to $|l|$
(C) A sequence cannot converge to more than one limit.
(D) The sequence with nth term $a_{n}=\left(1+\frac{1}{n}\right)^{n}$ converges to 1
39. The geometric series $1+x+x^{2}+\ldots$ to ∞ is
I. Convergent if $|x|<1$
II. Divergent if $x \geq 1$
III. Oscillates infinitely if $x<-1$
(A) Only I is correct
(B) I and II are correct
(C) I and III are correct
(D) I, II and III are correct
40. The series $\sum_{n=1}^{\infty} n^{-p}$ is :
(A) Convergent for $0<p \leq 1$
(B) Divergent for $0<p \leq 1$
(C) Convergent for all p
(D) Divergent for all p
41. The Dirichlet's function defined by $f(x)=\left\{\begin{array}{ll}1, & x \text { rational } \\ -1 & x \text { irrational }\end{array}\right.$ is
(A) continuous for every real x
(B) discontinuous for every real x
(C) continuous for rational numbers
(D) continuous for irrational numbers
42. Identify the incorrect statement.
(A) Every bounded function is Riemann Integrable.
(B) A continuous function $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow R$ is Riemann Integrable in [a, b].
(C) A monotone function $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow R$ is Riemann Integrable in [a, b].
(D) If the set of points of discontinuity of a bounded function $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow R$ is finite, then it is R-integrable.
43. For $\mathrm{f}(\mathrm{x})=\mathrm{x}, \mathrm{x} \in[0,1]$ and $\mathrm{P}=\left\{0, \frac{1}{3}, \frac{2}{3}, 1\right\}$ be a partition of $[0, I]$, then $U(P, f, x)+L(P, f, x)=$
(A) $\frac{1}{3}$
(B) $\frac{2}{3}$
(C) 1
(D) zero
44. For what value of $k, \int_{0}^{4}[x] d x=k$?
(A) $\mathrm{k}=4$
(B) $\mathrm{k}=6$
(C) $\mathrm{k}=8$
(D) None of these
45. If $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathrm{R}$ is a bounded function, then for $\varepsilon>0$ and $\delta>0$ such that
I. $\mathrm{U}(\mathrm{P}, \mathrm{f})<\int_{\mathrm{a}}^{\bar{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx}+\varepsilon$
II. $L(P, f)>\int_{a}^{b} f(x) d x-\varepsilon$ for each $P \in[a, b],\|x\|<\delta$
(A) Only I is correct
(B) Only II is correct
(C) Both I and II are correct
(D) Both I and II are incorrect
46. Which of the following is not correct?
(A) $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$
(B) $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{1}{2} \sqrt{\pi}$
(C) $\Gamma(\mathrm{n})=\mathrm{n} \Gamma(\mathrm{n}-1)$
(D) $\quad \mathrm{B}(\mathrm{m}, \mathrm{n})=\mathrm{B}(\mathrm{n}, \mathrm{m})$
47. The value of the integral $\int x^{3} e^{-x} d x$ is
(A) $-\mathrm{e}^{-\mathrm{x}}\left(\mathrm{x}^{3}+3 \mathrm{x}^{2}+6 \mathrm{x}+6\right)+\mathrm{c}$
(B) $e^{-x}\left(x^{3}+3 x^{2}+6 x+6\right)+c$
(C) $-e^{-x}\left(x^{3}-3 x^{2}+6 x-6\right)+c$
(D) None of these
48. The value of the integral $\int_{y=4}^{5} \int_{x=0}^{1} 4 x y d x d y$ is
(A) zero
(B) 1
(C) 9
(D) None of these

49 If $\int f(x) \cos x d x=\frac{1}{2}\{f(x)\}^{2}+c$, then $f(x)$ is:
(A) $\mathrm{x}+\mathrm{c}$
(B) $\quad \sin x+c$
(C) $\cos x+c$
(D) c
50. For what value of $k, \int_{0}^{\pi / 2} \frac{\sin x}{\sin x+\cos x} d x=k$?
(A) $\pi / 2$
(B) π
(C) $\pi / 4$
(D) $\pi^{2} / 2$
51. Given that the roots of the $4 x^{3}+12 x^{2}+11 x+3=0$ are in A.P., its roots are :
(A) $\left(-1,-\frac{1}{2},-\frac{3}{2}\right)$
(B) $\left(1, \frac{1}{2}, \frac{3}{2}\right)$
(C) $\left(-1,-\frac{3}{2},-\frac{5}{2}\right)$
(D) None of these
52. If α, β are the two distinct roots of

$$
x^{4}-14 x^{3}+73 x^{2}-168 x+144=0
$$

such that they occur in pairs, then $\alpha-\beta=$ \qquad is:
(A) zero
(B) 1
(C) 7
(D) None of these
53. On multiplying the roots of the equation $x^{4}+3 x^{3}-x^{2}+x-1=0$ by 2 , the resulting transformed equation is
(A) $y^{4}+6 y^{3}-2 y^{2}+2 y-2=0$
(B) $y^{4}+6 y^{3}-4 y^{2}+8 y-16=0$
(C) $y^{4}-6 y^{3}+4 y^{2}-8 y+16=0$
(D) None of these
54. If α, β and γ are the roots of the equation
$x^{3}-a x^{2}+b x-c=0$, then $\sum \alpha^{3}$ is
(A) $\mathrm{a}^{3}-3 a b+3 c$
(B) $\mathrm{a}^{3}+3 a b-3 \mathrm{c}$
(C) $a^{3}-2 a b+c$
(D) $a^{3}-a b+c$
55. The rank of the matrix $\left(\begin{array}{cccc}1 & 2 & -1 & 3 \\ 3 & 4 & 0 & -1 \\ -1 & 0 & -2 & 7\end{array}\right)$ is :
(A) 1
(B) 2
(C) 3
(D) 4
56. For what values of k and $l, \mathrm{~A}=\mathrm{B}^{-1}$? where, $A=\left(\begin{array}{ccc}k & 0 & -1 \\ 0 & 1 & l \\ 0 & 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
(A) $\mathrm{k}=1 \& l=1$
(B) $\mathrm{k}=0$ \& $l=1$
(C) $\mathrm{k}=1 \& l=0$
(D) None of these
57. The following system of equations has
$2 x+6 y=-11$
$6 x+20 y-6 z=-3$
$6 y-18 z=-1$
(A) unique solution
(B) no solution
(C) infinite nurnber of solutions
(D) finite number of solutions
58. Which of the following statements is incorrect?
(A) If A is symmetric, then so is AA^{\prime} and $\mathrm{A}^{\prime} \mathrm{A}$.
(B) Every sq. matrix can be uniquely expressed as the sum of symmetric and skew symmetric matrices.
(C) If A is a Hermition matrix, then so is AA^{H} and $A^{H} A$.
(D) If A and B are symmetric, then so is $A B$ and BA.
59. Find a matrix A such that $\left(2 A^{\mathrm{T}}+\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)\right)^{\mathrm{T}}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and give its first row
(A) $(2,-1)$
(B) $(0,0)$
(C) $(-1 / 2,1 / 2)$
(D) $(0,1 / 2)$
60. If $\mathrm{A} \lambda^{3}+\mathrm{B} \lambda^{2}+\mathrm{C} \lambda+\mathrm{D}=0$ is the characteristic equation of the matrix $M=\left(\begin{array}{ccc}-1 & 0 & 2 \\ 0 & -2 & 6 \\ 0 & 0 & 3\end{array}\right)$. Then,
(A) $\mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=-7, \mathrm{D}=6$
(B) $\mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=7, \mathrm{D}=-6$
(C) $\mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=-7, \mathrm{D}=-6$
(D) $\mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=7, \mathrm{D}=6$

DAJ-11116-A

ENTRANCE TEST-2016 FACULTY OF PHYSICAL AND MATERIAL SCIENCE M.A./M.Sc. STATISTICS Option-I : Statistics
 Option-II : Mathematics

Total Questions	$:$	Option-I : 60
		Option-II : 60
Time Allowed	$:$	70 Minutes

Question Booklet Series
Roll No. :

Instructions for Candidates :

1. Write your Roll Number in the space provided at the top of this page of Question Booklet and fill up the necessary information in the spaces provided on the OMR Answer Sheet.
2. OMR Answer Sheet has an Original Copy and a Candidate's Copy glued beneath it at the top. While making entries in the Original Copy, candidate should ensure that the two copies are aligned properly so that the entries made in the Original'Copy against each item are exactly copied in the Candidate's Copy.
3. All entries in the OMR Answer Sheet, including answers to questions, are to be recorded in the Original Copy
only.
4. Choose the correct/most appropriate response for each question among the options $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D and darken the circle of the appropriate response completely. The incomplete darkened circle is not correctly read by the OMR Scanner and no complaint to this effect shall be entertained.
5. Use only blue/black ball point pen to darken the circle of correct/most appropriate response. In no case
gel/ink pen or pencil should be used.
6. Do not darken more than one circle of options for any question. A question with more than one darkened
response shall be considered wrong.
7. There will be 'Negative Marking' for wrong answers. Each wrong answer will lead to the deduction of 0.25 marks from the total score of the candidate.
8. Only those candidates who would obtain Positive Score in Entrance Test Examination shall be eligible for
administration.
9. Do not make any stray mark on the OMR sheet.
10. Calculators and mobiles shall not be permitted inside the examination hall.
11. Rough work, if any, should be done on the blank sheets provided with the question booklet.
12. OMR Answer sheet must be handled carefully and it should not be folded or mutilated in which case it will not be evaluated.
13. Ensure that your OMR Answer Sheet has been signed by the Invigilator and the candidate himself/herself.
14. At the end of the examination, hand over the OMR Answer Sheet to the invigilator who will first tear off the original OMR sheet in presence of the Candidate and hand over the Candidate's Copy to the candidate.

M.A./M.Sc. Option-I : Statistics/A

1. Geometric mean of three numbers $2,4,8$ is :
(A) 4.67
(B) 4
(C) 5
(D) None of these
2. Arithmetic mean of the first n natural numbers is :
(A) $(\mathrm{n}+1) / 2$
(B) $n / 2$
(C) $n(n+1) / 2$
(D) None of these
3. For describing the variation in the data, we prefer which of the following measures ?
(A) MeanDeviation
(B) Range
(C) Standard Deviation
(D) None of these
4. If mean, median and mode of a distribution are same, then the distribution is called:
(A) Leptokurtic
(B) Mesokurtic
(C) Platykurtic
(D) None of these
5. If correlation coefficient between two variables is zero then:
(A) Two variables are independent
(B) Two variables are uncorrelated
(C) No relationship between two variables
(D) None of these
6. If $b_{x y}$ and $b_{y x}$ are $4 / 5$ and $9 / 20$ then $r_{x y}$ is :
(A) -0.6
(B) .76
(C) .8
(D) 0.6
7. The best regression line for the following data:

Age (in months):	1	2	3	3	4	5
Weight (in Kg) :	3	4	5	6	7	8

is:
(A) $Y=2+$ Age
(B) $\mathrm{X}=2+$ Weight
(C) Y=1+2Age
(D) None of these
8. For higher degree of correlation between the two variables, the angle between the lines will be:
(A) Higher
(B) Smaller
(C) Constant
(D) None of these
9. The probability of getting 2 or 5 when a die is tossed:
(A) $1 / 3$
(B) $1 / 4$
(C) $1 / 5$
(D) None of these
10. The probability of selecting a black card or a 6 from a deck of 52 cards equals :
(A) $15 / 32$
(B) $4 / 52$
(C) $7 / 13$
(D) None of these
11. In a class, 40% of the students study Mathematics and Science. 60% of the students study Mathematics. Then the probability of a student studying Science given that he/she is already studying Mathematics is :
(A) $1 / 2$
(B) $2 / 3$
(C) $5 / 3$
(D) None of these
12. Probability of an event A lies between:
(A) 0 and 1
(B) - 1 and 1
(C) 0 or 1
(D) None of these
13. Given that $E[X+4]=10$ and $E[X+4]^{2}=116$, then $E\left[x^{2}\right]$ is equal to :
(A) 24
(B) 52
(C) 36
(D) None of these
14. If Mean of a Poisson distribution is 4 , then the standard deviation is :
(A) 5
(B) 4
(C) 2
(D) None of these
15. $M_{x}=e^{\lambda\left(e^{t}-1\right)}$ is the moment generating function of which of the following distributions?
(A) Normal
(B) Poisson
(C) Binomial
(D) Exponential
16. Variance of geometric distribution is:
(A) pq
(B) p / q
(C) $n p q$
(D) q / p^{2}
17. If moment generating function of a distribution is $e^{5 t+\frac{1}{2} t^{2}}$ then variance of the distribution is:
(A) 1
(B) 2
(C) 5
(D) None of these
18. The probability that a normal variate will lie within the range $\mu \pm 3 \sigma$ is :
(A) . 9997
(B) .0027
(C) .9993
(D) .001
19. If X is uniformly distributed with mean 1 and variance $4 / 3$, then $\mathrm{P}(\mathrm{X}<0)$ is :
(A) $1 / 2$
(B) $1 / 3$
(C) $1 / 4$
(D) $1 / 5$
20. If X follows exponential distribution with parameter θ, then variance will be equal to mean if :
(A) $\theta>1$
(B) $\theta=0$
(C) $\theta<1$
(D) $\theta=1$
21. Sample size is treated as small if it is:
(A) >40
(B) >30
(C) ≤ 30
(D) None of these
22. Which of the following Errors is treated as more serious?
(A) TypeI
(B) Type II
(C) Level of significance
(D) None of these
23. If a hypothesis H_{0} is rejected at .05 level of significance, then it :
(A) Will be accepted at .01 level of significance
(B) Will be rejected at .01 level of significance
(C) May be rejected at .01 level of significance
(D) None of these
24. For testing sample mean versus population mean of 10 randomly selected samples, we use which of the following test statistics?
(A) $\frac{\overline{\mathrm{x}}-\mu}{\frac{\sigma}{\sqrt{n}}}$
(B) $\frac{\frac{x-\mu}{s}}{\sqrt{n-1}}$
(C) $\frac{\bar{x}-\mu}{\frac{s^{2}}{\sqrt{n}}}$
(D) $\frac{\frac{\bar{x}-\mu}{s}}{\sqrt{n}}$
25. If X follows normal distribution then $\mathrm{Z}^{2}=\frac{(\mathrm{x}-\mu)^{2}}{\sigma}$ is a Chi-Square variate with:
(A) nd.f.
(B) $\mathrm{n}-1$ d.f.
(C) 1 d.f.'
(D) None of these
26. In a paired t-test, we are given that $\bar{d}=2.58, S=3.09, n=12$ and $t_{0.05}$ for 11 d.f. is 2.89 then H_{0} :
(A) May be rejected
(B) Will be accepted
(C) May be accepted
(D) Will be rejected
27. A random sample of 27 pairs of observations from a normal population gave $\mathrm{r}=0.6$. If $\mathrm{t}_{0.05}$ for 25 d.f. $=2.06$, then r is :
(A) Significant
(B) In-significant
(C) Leastsignificant
(D) None of these
28. For testing equality of two population variances, we use:
(A) Paired t-test
(B) Z-test
(C) T-test
(D) F-test
29. Census is conducted in India every:
(A) 5 years
(B) 10 years
(C) 15 years
(D) None of these
30. \qquad is a set of elements taken from a larger population according to certain rules.
(A) Samples
(B) Statistic
(C) Population
(D) None of these
31. If each member of a population has an equal chance of being selected, then this is called:
(A) A non-random Sampling
(B) Quota Sampling
(C) A Snowball Sampling
(D) None of these
32. Which of the following is not an advantage of Sampling over census?
(A) Less Time
(B) Less Cost
(C) More Precise Results
(D) None of these
33. If 5 samples out of a population having 100 units are to be selected using Systematic Sampling, then every \qquad population unit is to be selected after the first sample is randomly selected.
(A) $5^{\text {th }}$
(B) $10^{\text {th }}$
(C) $15^{\text {th }}$
(D) $20^{\text {th }}$
34. In order to study socio-economic conditions of university employees, we should use :
(A) Simple Random Sampling
(B) Stratified Sampling
(C) Cluster Sampling
(D) None of these
35. If the population consists of a linear trend, then which of the following inequalities is true?
(A) $\quad \operatorname{Var}\left(\bar{y}_{\text {st }}\right) \leq \operatorname{Var}\left(\bar{y}_{\text {sys }}\right) \leq \operatorname{Var}\left(\bar{y}_{\mathrm{n}}\right) \mathrm{R}$
(B) $\quad \operatorname{Var}\left(\bar{y}_{\mathrm{st}}\right) \leq \operatorname{Var}\left(\bar{y}_{\mathrm{sys}}\right) \geq \operatorname{Var}\left(\bar{y}_{\mathrm{n}}\right) \mathrm{R}$
(C) $\operatorname{Var}\left(\bar{y}_{\text {st }}\right) \geq \operatorname{Var}\left(\bar{y}_{\text {sys }}\right) \geq \operatorname{Var}\left(\bar{y}_{\mathrm{n}}\right) R$
(D) None of these
36. If the sample size increases then standard error :
(A) Increases
(B) Decreases
(C) Does not change
(D) None of these
37. In a CRD with 4 treatments replicated 5 times, then error d.f. will be :
(A) 19
(B) 3
(C) 16
(D) None of these
38. RBD is used where we have :
(A) One way variation
(B) Two way variation
(C) Three way variation
(D) None of these
39. The basic principles of the experimental designs are:
(A) Blocks, Experimental Units, Treatments
(B) Replication, Randomization, Local Control
(C) Replication, Blocks, Treatments
(D) Blocks, Experimental Units, Randomization
40. Mean Sum of Squares due to treatments for RBD with k treatments and r blocks is calculated as :
(A) $\quad \operatorname{SSB} /(k-1)$
(B) $\mathrm{SST} /(\mathrm{r}-1)$
(C) $\quad \mathrm{SST} /(\mathrm{k}-1)$
(D) None of these
41. Consider the following LPP : Maximize $Z=50 x+18 y$

Sub. to $2 x+y \leq 100, x+y \leq 80, x, y \geq 0$, then which of the following is an optimal solution to the above problem?
(A) $(40,21)$
(B) $(20,40)$
(C) $(20,60)$
(D) $(50,0)$
42. A solution of an LPP is said to be basic if it satisfies :
(A) Set of constraints
(B) Objective function
(C) Non-negativity Condition
(D) None of these
43. If any of the $\mathrm{Zj}-\mathrm{Cj}$ in the final optimal table of Simplex for non basic variable is at zero level, then it is an indication of:
(A) Infeasibility
(B) Feasibility
(C) Optimal solution
(D) Alternative optimal solution

Consider the following Transportation Problem and answer Q. No. 44-45 :

Destinations						
\qquad 1 2 3 4 Supply 1 3 1 7 4 300 2 2 6 5 9 400 3 8 3 3 2 500 Demand 250 350 400 200 1200						

44. The feasible solution to the above T.P. by North-West Corner Rule is :
(A) 3000
(B) 2500
(C) 4400
(D) None of these
45. The feasible solution to the above T.P. must contain \qquad basic cells (allocations).
(A) 5
(B) 6
(C) 7
(D) 8
46. The geometric mean of Laspeyre's and Paasche's indices is :
(A) Bowley's ideal Index
(B) Marshal and Edgeworth's Index
(C) Chain Index
(D) Fisher's Index
47. Seasonal variations repeat with a cycle of :
(A) Five years
(B) Seven years
(C) Two years
(D) A year
48. The Time Reversal Test is satisfied if:
(A) $\mathrm{P}_{0 \mathrm{n}} \times \mathrm{P}_{\mathrm{n} 0}=1$
(B) $\mathrm{p}_{0 \mathrm{n}} \times \mathrm{Q}_{0 \mathrm{n}}=\frac{\sum \mathrm{p}_{\mathrm{n}} \mathrm{q}_{\mathrm{n}}}{\sum \mathrm{p}_{0} \mathrm{q}_{0}}$
(C) $\mathrm{P}_{0 \mathrm{n}} \times \mathrm{P}_{0 \mathrm{n}}=1$
(D) None of these
49. Vital rates are customarily expressed as :
(A) per ten thousand
(B) percentages
(C) per million
(D) per thousand
50. Crude Birth rate is calculated as :
(A) (Total No. of Live Births during a Year/Total Mean Population during the same year) $\times 1000$
(B) (Total No. of Live Births during a Year/Total Mean Population during the same year) $\times 100$
(C) (Total No. of deaths during a Year/Total Population during the same year) $\times 100$
(D) None of these
51. Life table is also known as :
(A) Survival Table
(B) Life Expectancy Table
(C) Mortality Table
(D) None of these
52. Sex Ratio of Jammu and Kashmir as per 2011 Census is :
(A) 889
(B) 817
(C) 945
(D) None of these
53. Life expectancy in India is about :
(A) 50 years
(B) 58 years
(C) 68 years
(D) None of these
54. The process does not meet the specifications if:
(A) $6 \sigma<U-L$
(B) $6 \sigma=U-L$
(C) $6 \sigma>\mathrm{U}-\mathrm{L}$
(D) $6 \sigma=\frac{U+L}{2}$
where U and L are upper and lower specification limits respectively.
55. For an \bar{X} - chart, when the process is under control, the average run length (ARL) is equal to:
(A) $\frac{1}{\alpha}$
(B) $\frac{1}{1-\alpha}$
(C) $\frac{1}{\beta}$
(D) $\frac{1}{1-\beta}$
56. The \bar{X} chart is more effective to detect shifts in process mean if the magnitude of shifts is:
(A) Greater than 1.5 o
(B) Lesser than 1.5σ
(C) Equal to 1.5σ
(D) None of these
57. Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}} \sim \mathrm{N}(\mu, 1)$ then $\mathrm{T}=\frac{\sum \mathrm{xi}^{2}}{\mathrm{n}}$ is an unbiased estimator of:
(A) μ^{2}
(B) $\mu^{2}+2$
(C) $\mu^{2}-1$
(D) $\mu^{2}+1$
58. If the level of confidence increases then the interval containing the estimated value of the unknown parameter will:
(A) Become narrow
(B) Become wider
(C) Remain the same
(D) None of these
59. Which of the following is not the requirement of a good estimator?
(A) Unbiasedness
(B) Consistency
(C) Symmetry
(D) Sufficiency
60. A \qquad is a numerical characteristic of a sample and a \qquad is a numerical characteristic of population.
(A) Sample, Population
(B) Population, Sample
(C) Statistic, Parameter
(D) Parameter, Statistic

M.A./M.Sc. Option-II : Mathematics/A

1. Which of the following is true for the function:

$$
f(x)= \begin{cases}x^{2} & \text { for } x \leq 0 \\ 1 & \text { for } 0<x<1 \\ \frac{1}{x} & \text { for } x>1\end{cases}
$$

(A) Continuous at $\mathrm{x}=0$
(B) Differentiableat $x=0$
(C) Discontinuous at $\mathrm{x}=0$ and non-differentiable at $\mathrm{x}=0$
(D) None of the above
2. $\operatorname{Lim}_{n \rightarrow \infty} \frac{3+2 \sqrt{n}}{\sqrt{n}}$ equals:
(A) 2
(B) $\sqrt{2}$
(C) $\frac{1}{2}$
(D) None of the above
3. Which of the following is true for the function $f(x)=x(x-1)(x-2)$ defined in $\left[0, \frac{1}{2}\right]$?
(A) Lagrange's mean value theorem is not applicable
(B) Lagrange's mean value theorem is applicable with $\mathrm{C}=\frac{6-\sqrt{21}}{6}$
(C) Rolle's theorem is applicable with $\mathrm{C}=\frac{6-\sqrt{21}}{6}$
(D) None of the above
4. Let $f(x)$ and $g(x)$ be two functions. For the Cauchy's mean value theorem to hold, which of the following conditions is not required?
(A) $f(x)$ and $g(x)$ are both continuous in $[a, b]$
(B) $\mathrm{f}^{\prime}(\mathrm{x})$ and $\mathrm{g}^{\prime}(\mathrm{x})$ both exist in (a, b) and both do not vanish simultaneously
(C) $g(a) \neq g$ (b)
(D) $\mathrm{f}(\mathrm{a}) \neq \mathrm{f}(\mathrm{b})$
5. $\operatorname{Lim}_{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}\right)$ equals:
(A) $\frac{1}{3}$
(B) $\frac{-1}{3}$
(C) $\frac{1}{2}$
(D) None of the above
6. If $u=x f\left(\frac{y}{x}\right)$, then $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$ equals :
(A) $2 u$
(B) u^{2}
(C) u
(D) None of the above
7. Which of the following is true for the curve $f(x)=e^{x}$?
(A) Concave downwards throughout
(B) Concave upwards
(C) Convex upwards
(D) None of the above
8. What is the point of inflexion on the curver $r^{2} \theta=a^{2}$?
(A) $\left(\frac{1}{2}, \pm \sqrt{2} \mathrm{a}\right)$
(B) $\left(\pm \sqrt{2} a, \frac{1}{2}\right)$
(C) $(1, \pm \sqrt{2} \mathrm{a})$
(D) None of the above
9. The expression $\tan \left\{i \log \left(\frac{a-i b}{a+i b}\right)\right\}$ reduces to:
(A) $\frac{a b}{a^{2}+b^{2}}$
(B) $\frac{2 a b}{a^{2}-b^{2}}$
(C) $\frac{2 a b}{a^{2}+b^{2}}$
(D) None of the above
10. If $\alpha+i \beta=\cot ^{-1} z$, where $z=x+i y$ and α is a constant, then the locus of z is :
(A) $x^{2}+y^{2}-x \cot 2 \alpha-1=0$
(B) $x^{2}+y^{2}-2 x \cot \alpha-1=0$
(C) $x^{2}+y^{2}-2 x \cot 2 \alpha+1=0$
(D) $x^{2}+y^{2}-2 x \cot 2 \alpha-1=0$
11. $\tan ^{-1} \alpha+\tan ^{-1} \beta+\tan ^{-1} \gamma+\tan ^{-1} \delta$ equals :
(A) $n \pi-\frac{\pi}{2}$
(B) $\mathrm{n} \pi+\frac{\pi}{2}$
(C) $n \pi+\frac{\pi}{2}-8$
(D) None of the above
12. $\log \tan \left(\frac{\pi}{4}+i \frac{x}{2}\right)$ equals:
(A) $i \tan ^{-1}(\sinh x)$
(B) $i \tan (\sinh x)$
(C) $i \tan (\sin x)$
(D) None of the above
13. What is the focus of the parabola $x^{2}-6 x-6 y+6=0$?
(A) $(1,3)$
(B) $(1,-3)$
(C) $(2,3)$
(D) None of the above
14. If a straight line $y=m x+c$ touches the parabola $y^{2}=4 a(x+a)$, then :
(A) $c=a m$
(B) $\mathrm{c}=\mathrm{a}+\frac{\mathrm{a}}{\mathrm{m}}$
(C) $c=a m+\frac{a}{m}$
(D) $\mathrm{c}=\mathrm{m}+\frac{1}{\mathrm{~m}}$
15. What is the locus of the mid points of the system of parallel chords to the ellipse?
(A) Straight line passing through origin
(B) Parabola with vertex $(0,0)$
(C) Ellipse with centre $(0,0)$
(D) None of the above
16. What is the eccentricity of a rectangular hyperbola?
(A) 1
(B) 2
(C) $\sqrt{3}$
(D) None of the above
17. What is the pole of $\lambda x+m y+n z=p$ with respect to the sphere $x^{2}+y^{2}+z^{2}=a^{2}$?
(A) $\left(\frac{\lambda}{\mathrm{p}}, \frac{\mathrm{m}}{\mathrm{p}}, \frac{n}{\mathrm{p}}\right)$
(B) $\left(\frac{a^{2} \lambda}{p}, \frac{a^{2} m}{p}, \frac{a^{2} n}{p}\right)$
(C) $\left(\frac{\mathrm{a}^{2}}{\mathrm{p}}, \frac{\mathrm{b}^{2}}{\mathrm{p}}, \frac{\mathrm{c}^{2}}{\mathrm{p}}\right)$
(D) None of the above
18. What is the equation of the cone whose generators pass through the point $(\mathrm{a}, \mathrm{b}, \mathrm{g})$ and have their direction cosines satisfying the relation $a \lambda^{2}+b m^{2}+\mathrm{cn}^{2}=0$.
(A) $a(x-\alpha)^{2}+b(y-\beta)^{2}+c(z-\gamma)^{2}=0$
(B) $\mathrm{a}(\mathrm{x}+\alpha)^{2}+\mathrm{b}(\mathrm{y}+\beta)^{2}+\mathrm{c}(\mathrm{z}+\gamma)^{2}=0$
(C) $a x^{2}+b y^{2}+c z^{2}=a \alpha+b \beta+c \gamma$
(D) None of the above
19. What is the equation of the cylinder whose generators are parallel to the z-axis and intersect the curve $a x^{2}+b y^{2}=2 z, \lambda x+m y+n z=p$?
(A) $n\left(\mathrm{ax}^{2}+\mathrm{by}^{2}\right)+2(\lambda \mathrm{x}+\mathrm{my}+\mathrm{nz})=\mathrm{p}$
(B) $n\left(a x^{2}+b y^{2}\right)+2(\lambda x+m y)=2 p$
(C) $n\left(a x^{2}+b y^{2}\right)+2(\lambda x+m y)=0$
(D) None of the above
20. Which of the following is correct?
(A) A circular cylinder is the locus of a line which moves such that it is always parallel to a fixed line and is always at a constant distance from it
(B) A circular cylinder is the locus of a line which moves such that it is always perpendicular to a fixed line
(C) A circular cylinder is the locus of a point which moves such that it is always at a fixed distance from a fixed point
(D) None of the above
21. What is the order of the differential equation whose general solution is given by $\mathrm{y}=\mathrm{c}_{1} \mathrm{e}^{2 \mathrm{x}+\mathrm{c}_{2}+\mathrm{c}_{3} \mathrm{e}^{\mathrm{x}}+\mathrm{c}_{4} \sin \left(\mathrm{x}+\mathrm{c}_{5}\right) \text { ? }}$
(A) 5
(B) 2
(C) 4
(D) 3
22. What is the solution of the differential equation $\frac{d y}{d x}=\frac{x+y}{x}$ with $y(1)=1$?
(A) $y=x \log x+x$
(B) $y=\log x+x$
(C) $y=x \log x+x^{2}$
(D) None of the above
23. $\int(x \log x+x \sin x) d x$ equals :
(A) $x(\log x-\cos x+1)+\sin x+c$
(B) $x(\log x+\cos x-1)+\sin x+c$
(C) $x(\log x+\cos x+1)+\sin x+c$
(D) $x(\log x-\cos x-1)+\sin x+c$
24. If $\int \frac{f(x)}{\log \sin x}=\log (\log \sin x)+c$, then $f(x)$ equals:
(A) $\sin x$
(B) $\log \sin x$
(C) $\cot x$
(D) None of the above
25. $\lim _{n \rightarrow \infty}\left(\frac{1^{p}+2^{p}+3^{p}+\ldots+n^{p}}{n^{p+1}}\right)$ equals:
(A) $\frac{1}{\mathrm{p}+1}$
(B) $\frac{1}{\mathrm{p}-1}$
(C) $\frac{1}{p+2}$
(D) None of the above
26. The area between $x^{2}+y^{2}=\pi^{2}$ and $y=\sin x$ in the first quadrant is equal to :
(A) $\frac{\pi^{3}}{4}$
(B) $\frac{\pi^{3}-8}{4}$
(C) $\frac{\pi^{3}-16}{4}$
(D) $\frac{\pi^{3}-8}{2}$
27. What is the area bounded by $x y^{2}=4(2-x)$ and the y-axis ?
(A) 2π
(B) 4π
(C) 6π
(D) 12π
28. The differential equation whose solution is $\mathrm{Ax}^{2}+\mathrm{By}^{2}=1$, where A and B are arbitrary constants, is of :
(A) first order and second degree
(B) first order and first degree
(C) second order and first degree
(D) second order and second degree
29. If $\mathrm{A}=\left[\begin{array}{rr}2 & 1 \\ -4 & -2\end{array}\right]$, then $I+2 \mathrm{~A}+3 \mathrm{~A}^{2}+\ldots . \infty$ equals :
(I is a unit matrix of order2)
(A) $\left[\begin{array}{rr}4 & 1 \\ -4 & 0\end{array}\right]$
(B) $\left[\begin{array}{rr}3 & 1 \\ -4 & -1\end{array}\right]$
(C) $\left[\begin{array}{rr}5 & 2 \\ -3 & -8\end{array}\right]$
(D) $\left[\begin{array}{rr}5 & 2 \\ -8 & -3\end{array}\right]$
30. The matrix $\left[\begin{array}{rrr}1 & 2 & 3 \\ 1 & 2 & 3 \\ -1 & -2 & -3\end{array}\right]$ is:
(A) Idempotent
(B) Orthogonal
(C) Involutory
(D) Nilpotent
31. The value of the determinant $\left|\begin{array}{ccc}1 & 1 & 1 \\ 3 c_{1} & 4 c_{1} & 5 c_{1} \\ 3 c_{2} & 4 c_{2} & 5 c_{2}\end{array}\right|$ equals: (c_{1} and c_{2} are any integers)
(A) 2
(B) 1
(C) 0
(D) None of the above
32. Let $\mathrm{D}=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y\end{array}\right|$: For $x y \neq 0, x \neq 0$ and $y \neq 0$ which one of the following is true?
(A) D is divisible by x but noty
(B) D is divisible by both x and y
(C) D is divisible by y but not x
(D) D is not divisible by x and not divisible by y
33. If $\boldsymbol{\lambda}$ is a characteristic root of an orthogonal matrix, then which of the following is true?
(A) $\frac{\lambda}{2}$ is not a characteristic root
(B) $\frac{1}{\lambda}$ is also a characteristic root
(C) $-\lambda$ is not a characteristic root
(D) None of the above
34. Which of the following is true?
(A) A real orthogonal matrix has no real characteristic roots other than ± 1
(B) A real orthogonal matrix has real characteristic roots other than ± 1
(C) The characteristic roots of a real orthogonal matrix are of modulus 2
(D) None of the above
35. Which of the following is not true?
(A) The product of two orthogonal matrices of the same order is orthogonal
(B) The inverse of an orthogonal matrix is also orthogonal
(C) The rowrank of a matrix is equal to its column rank
(D) The rank of a singular matrix of order n is always n
36. Let A be any matrix and let $\mathrm{B}=\mathrm{AA}^{\mathrm{T}}$ (where A^{T} is the transpose of A). Which of the following is true?
(A) B isHermitian
(B) B is skew-symmetric
(C) B is symmetric
(D) None of the above
37. If one root of the equation $x^{4}+2 x^{3}-16 x^{2}-22 x+7=0$ is $\alpha=2+\sqrt{3}$, and the other roots are β, γ and δ. Then $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}$ equals :
(A) 36
(B) $36+12 \sqrt{2}$
(C) $36-12 \sqrt{2}$
(D) None of the above
38. Let the roots of the equation $6 x^{3}-11 x^{2}+6 x-1=0$ be in harmonic progression. If the roots are α, β and γ then $\frac{1}{\alpha}+\frac{1}{\beta}-\gamma$ equals ($\alpha<1$ and $\beta<1$):
(A) 2
(B) 4
(C) 6
(D) None of the above
39. If α, β, and γ are the roots of the equation $x^{3}-p x^{2}+q x-r=0$, then $\sum\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)$ equals :
(A) $\frac{\mathrm{pq}-3}{\mathrm{r}}$
(B) $\frac{p q+r}{2}$
(C) $\frac{3 p q-r}{r}$
(D) $\frac{\mathrm{pq}-3 \mathrm{r}}{\mathrm{r}}$
40. If $\alpha-i \beta$ is a root of the equation $x^{3}+q x+r=0$ then 2α is the root of the equation:
(A) $\mathrm{x}^{3}+\mathrm{px}+\mathrm{r}=0$
(B) $\mathrm{x}^{3}-\mathrm{qx}+\mathrm{r}=0$
(C) $\mathrm{x}^{3}+\mathrm{qx}-\mathrm{r}=0$
(D) None of the above
41. The sequence $\left\langle\left(1+\frac{1}{n}\right)^{n}\right\rangle$ is:
(A) Convergent
(B) Divergent
(C) Oscillates
(D) None of the above
42. The sequence $1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+\ldots . .+\frac{1}{\sqrt{n}}$ is :
(A) Convergent
(B) Divergent
(C) Neither convergent nor divergent
(D) None of the above
43. The function $f(x)$ on R defined by:

$$
f(x)=\left\{\begin{array}{c}
1, \text { when } x \text { is rational } \\
-1, \text { when } x \text { is irrational }
\end{array}\right.
$$

Which one of the following is true for $f(x)$?
(A) It isnotDirichlet's function
(B) It is continuous for every $\mathrm{x} \in \mathrm{R}$
(C) It is discontinuous for every $x \in R$
(D) None of the above
44. If $f(x)$ is continuous in $[a, b]$ and $f(a)$ and $f(b)$ have opposite signs, then there is at least one value of x for which $f(x)$ is:
(A) 1
(B) -1
(C) e
(D) 0
45. If $\mathrm{f}(\mathrm{z})$ is analytic inside and on a simple curve C and is not identically equal to a constant, then:
(A) minimum value of $|\mathrm{f}(\mathrm{z})|$ occurs on C
(B) maximum value of $|\mathrm{f}(\mathrm{z})|$ occurs on C
(C) $|\mathrm{f}(\mathrm{z})|<\mathrm{M}$ for some constant
(D) none of the above
46. What is the value of the integral $\int_{C} \frac{1}{z-a} d z$ round a circle whose equation is $|z-a|=\rho$?
(A) 2π
(B) π
(C) $2 \pi \mathrm{i}$
(D) None of the above
47. If C is the square with vertices $a t \pm 2 \pm 2 i$, then $\int_{C} \frac{\cosh z}{z^{3}} d z$ equals :
(A) $\mathrm{i} \pi$
(B) π
(C) $\frac{\pi}{2}$
(D) $\frac{\mathrm{i} \pi}{2}$
48. $\int_{0}^{\infty} \frac{d x}{x^{4}+1}$ equals :
(A) $\frac{\pi}{2}$
(B) $\frac{\pi}{\sqrt{2}}$
(C) $\frac{1}{\sqrt{2}}$
(D) None of the above
49. If $f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & ,(x, y) \neq(0,0) \\ 0 & , \text { otherwise }\end{cases}$
then $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ equals:
(A) 1
(B) 2
(C) 0
(D) does notexist
50. The function $f(x, y)=\left\{\begin{array}{ll}\frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0 & ,(x, y)=(0,0)\end{array}\right.$ is:
(A) continuousat $(0,0)$
(B) discontinuousat $(0,0)$
(C) continuousat $(1,1)$
(D) differentiableat $(0,0)$
51. Which one of the following is true for the function?
$f(x, y)= \begin{cases}\frac{x y}{\sqrt{x^{2}+y^{2}}}, & (x, y) \neq(0,0) \\ 0 & ,(x, y)=(0,0)\end{cases}$
(A) not differentiable at $(0,0)$
(B) differentiable at $(0,0)$
(C) continuous and differentiable at $(0,0)$
(D) none of the above
52. Which one of the following is true for the function $f(x, y)=x^{2}-3 x y^{2}+2 y^{4}$?
(A) has maximumat $(0,0)$
(B) has minimumat $(0,0)$
(C) has neithermaximum nor minimum at $(0,0)$
(D) none of the above
53. Which one of the following is the generator of the cyclic group $G=\{1,-1, i,-i\}$ under multiplication?
(A) -1
(B) 1
(C) -i
(D) None of the above
54. Let H and K be two subgroups of a group G. Then $H K$ is a subgroup of G if and only if :
(A) $\mathrm{HK} \neq \mathrm{KH}$
(B) $\mathrm{H}=\mathrm{K}^{-1}$
(C) $\mathrm{K}=\mathrm{H}^{-1}$
(D) $\mathrm{HK}=\mathrm{KH}$
55. The order of a subgroup H of a finite group G is the divisor of the order of the group G is:
(A) Cauchy's theorem
(B) Lagrange's theorem
(C) Euler's theorem
(D) None of the above
56. Let a be an element of order n in a group G and let p be a prime number. What is the order of a^{p} in G ?
(A) n
(B) p
(C) $\mathrm{n}-\mathrm{p}$
(D) none of the above
57. Which of the following is true?
(A) In a field, the unity and zero are not distinct elements
(B) Every field is an integral domain
(C) The multiplicative inverse of a non-zero element of a field is not unique
(D) None of the above
58. Which of the following is not true ?
(A) A finite commutative ring without zero divisors is a field
(B) The isomorphic image of a ring R without zero divisors is a a ing without zero divisors
(C) Isomorphic image of a division ring is a divisionring
(D) Isomorphic image of an integral domain is notan integral domain
59. A subset W of a vector space $V(F)$ is a subspace of V if and only if:
(A) $a, b \in F ; \alpha, \beta \in V \Rightarrow \alpha-\beta \in W$
(B) $\mathrm{a}, \mathrm{b} \in \mathrm{F} ; \alpha, \beta \in \mathrm{V} \Rightarrow \mathrm{a}+\mathrm{b} \in \mathrm{W}$
(C) $\mathrm{a}, \mathrm{b} \in \mathrm{F} ; \alpha, \beta \in \mathrm{V} \Rightarrow \mathrm{a} \alpha+\mathrm{b} \beta \in \mathrm{W}$
(D) None of the above
60. Which of the following is not true?
(A) If $\mathrm{V}(\mathrm{F})$ is a vector space, then $(-1) \alpha \neq-\alpha, \beta+(\alpha-\beta) \neq \alpha$
(B) The intersection of any family of subspaces of a vector space is a subspace
(C) The union of two subspaces W_{1} and W_{2} is a subspace if and only if one is contained in the other
(D) None of the above

Rough Work

