ENTRANCE TEST-2023

SCHOOL OF APPLIED SCIENCES AND TECHNOLOGY ELECTRONICS

Total Questions : 60
Time Allowed : 70 Minutes

Question Booklet Series
A
Roll No. :

Instructions for Candidates :

1. Write your Entrance Test Roll Number in the space provided at the top of this page of Question Booklet and fill up the necessary information in the spaces provided on the OMR Answer Sheet.
2. OMR Answer Sheet has an Original Copy and a Candidate's Copy glued beneath it at the top. While making entries in the Original Copy, candidate should ensure that the two copies are aligned properly so that the entries made in the Original Copy against each item are exactly copied in the Candidate's Copy.
3. All entries in the OMR Answer Sheet, including answers to questions, are to be recorded in the Original Copy only.
4. Choose the correct / most appropriate response for each question among the options A, B, C and D and darken the circle of the appropriate response completely. The incomplete darkened circle is not correctly read by the OMR Scanner and no complaint to this effect shall be entertained.
5. Use only blue/black ball point pen to darken the circle of correct/most appropriate response. In no case gel/ink pen or pencil should be used.
6. Do not darken more than one circle of options for any question. A question with more than one darkened response shall be considered wrong.
7. There will be 'Negative Marking' for wrong answers. Each wrong answer will lead to the deduction of 0.25 marks from the total score of the candidate.
8. Only those candidates who would obtain positive score in Entrance Test Examination shall be eligible for admission.
9. Do not make any stray mark on the OMR sheet.
10. Calculators and mobiles shall not be permitted inside the examination hall.
11. Rough work, if any, should be done on the blank sheets provided with the question booklet.
12. OMR Answer Sheet must be handled carefully and it should not be folded or mutilated in which case it will not be evaluated.
13. Ensure that your OMR Answer Sheet has been signed by the Invigilator and the candidate himself/herself.
14. At the end of the examination, hand over the OMR Answer Sheet to the invigilator who will first tear off the original OMR sheet in presence of the Candidate and hand over the Candidate's Copy to the candidate.
15. A coil of inductance $\mathrm{L}=5.00 \mu \mathrm{H}$ and a capacitor of 5 . When $\mathrm{R}=0$ in a series RLC circuit, but the net capacitance $\mathrm{C}=200 \mathrm{pF}$ is connected in series. Suppose the frequency is $\mathrm{f}=4.00 \mathrm{MHz}$. What is the net reactance?
(A) -j 73
(B) j 73
(C) -j 199
(D) \quad-j 126
16. The complex admittance of a certain parallel circuit is $0.010-\mathrm{j} 0.0050$. What is the complex impedance of this same circuit, assuming the frequency does not change?
(A) $80+\mathrm{j} 20$
(B) $80+\mathrm{j} 40$
(C) $40+\mathrm{j} 40$
(D) $80-\mathrm{j} 40$
17. Which of the following is not a characteristic of an independent voltage source?
(A) voltage independent of magnitude of current drawn
(B) voltage dependent on magnitude of current drawn
(C) independent of direction of current flow
(D) can supply or receive uninterrupted energy at constant voltage
18. A practical voltage source can be represented by
(A) an ideal voltage source with its internal resistance connected in series
(B) an ideal voltage source with its internal resistance connected across its terminals
(C) by neglecting the internal resistance
(D) none of these
reactance is not zero, the impedance vector
(A) always points straight up.
(B) always points straight down.
(C) always points straight toward the right.
(D) None of the above is correct.
19. A Zener diode would most likely be found in
(A) the mixer in a super heterodyne receiver.
(B) the PLL in a circuit for detecting FM.
(C) the product detector in a receiver for SSB .
(D) the voltage regulator in a power supply.
20. A diode can be used as a frequency multiplier because ofits
(A) junction capacitance.
(B) nonlinearity.
(C) avalanche voltage.
(D) forward break over.
21. Correct answer from these points:
a. tunnel diode used for high frequency switching operations.
b. tunnel diode uses a high doping level to provide a narrow junction.
(A) True, False
(B) False, False
(C) True, True
(D) False, True
22. The following is a negative differential resistance diode:
(A) PN Junction diode
(B) Zener diode
(C) Tunnel diode
(D) Schottky diode
23. Which of the following substances is sometimes used as the semiconductor material in junction field-effect transistors (JFETs) ?
(A) Galliumarsenide
(B) Mica
(C) Glass
(D) Polystyrene
24. A common-collector transistor circuit is often used :
(A) to provide high gain and sensitivity over a wide range of frequencies.
(B) to match a high impedance to a low impedance.
(C) as a high-fidelity audio power amplifier.
(D) as an oscillator at microwave frequencies.
25. Suppose a bipolar-transistor amplifier has a dc collector input of 115 W and an ac power output of 65.0 W. What is the efficiency in percent?
(A) 50%
(B) 5.6%
(C) 5%
(D) 56.5%
26. A twin T oscillator is commonly used for generating
(A) AF signals.
(B) High-frequency RF signals.
(C) Microwave RF signals.
(D) Powerful bursts of RF energy.
27. A circuit has a rms ac input voltage of 24.2 V and a rms ac output voltage of 19.9 V . What is the gain in decibels?
(A) 1.7 dB
(B) -1.7 dB
(C) 0.0849 dB
(D) 20 dB
28. The frequency at which a quartz crystal oscillator produces energy is largely dependent on :
(A) the load impedance.
(B) the physical thickness of the quartz wafer.
(C) the amount of resistance through the crystal.
(D) the power-supply voltage.
29. AnFET amplifier is 60 percent efficient. If the power output is 3.5 W , what is the dc drain power input?
(A) 5.8 W
(B) 4.0 W
(C) 8.8 W
(D) 7.0 W
30. What is the binary equivalent of decimal 29 ?
(A) 10101
(B) 11101
(C) 10111
(D) 11011
31. The time period of a monostable 555 multivibrator :
(A) RC
(B) 3 RC
(C) 1.1 RC
(D) 0.33 RC
32. An audio amplifier is an example of \qquad
(A) Digital IC
(B) Linear IC
(C) Both digital and linear IC
(D) None of the above
33. In voltage follower circuit the input and output voltages are:
(A) $\mathrm{V}_{\text {in }}=2 \mathrm{~V}$ and $\mathrm{V}_{\text {out }}=3 \mathrm{~V}$
(B) $\mathrm{V}_{\text {in }}=10 \mathrm{~V}$ and $\mathrm{V}_{\text {out }}=11 \mathrm{~V}$
(C) $\mathrm{V}_{\text {in }}=9 \mathrm{~V}$ and $\mathrm{V}_{\text {out }}=9 \mathrm{~V}$
(D) $\mathrm{V}_{\text {in }}=4 \mathrm{~V}$ and $\mathrm{V}_{\text {out }}=7 \mathrm{~V}$
34. CMRR value of an ideal instrumentation amplifier :
(A) 1
(B) 0
(C) Infinity
(D) 0.5
35. Inverters are placed in series with both inputs of an 27. If you see a number represented by FF in the

AND gate. Under what conditions is the output of the resulting black box high ?
(A) If and only if both inverter inputs are high
(B) If and only if both inverter inputs are low
(C) If and only if one inverter input is high and the other is low
(D) Under no conditions (the output is always low)
23. What is the octal equivalent of binary 1010 ?
(A) 4
(B) 10
(C) 12
(D) There is no way to tell without more information.
24. What is the largest possible radix 10 number that can be represented as a six-digit binary number?
(A) Decimal 256
(B) Decimal 128
(C) Decimal 64
(D) Decimal 63
25. Frequency deviation in FM is :
(A) Change in carrier frequency to the frequency above and below the centre frequency
(B) Formation of side bands
(C) The variation of the instantaneous carrier frequency in proportion to the modulating signal
(D) All of the above
26. DeMorgan's Theorem states that, for all logical statements X and Y , where \qquad is complement.
(A) $-(X * Y)=X+Y$
(B) $\mathrm{X}^{*} \mathrm{Y}=-(\mathrm{X}+\mathrm{Y})$
(C) $(-\mathrm{X})+(-\mathrm{Y})=\mathrm{X} * \mathrm{Y}$
(D) $(-\mathrm{X})+(-\mathrm{Y})=-(\mathrm{X} * \mathrm{Y})$ documentation for an electronic circuit or system, you can be certain that the number is
(A) radix 16 .
(B) radix 10 .
(C) radix 8 .
(D) radix 2 .
28. A binary digital black box with two inputs, called X and Y and an output Z. If $X=0$ and $Y=1$, then $Z=0$. In all other instances, $Z=1$. Which of the following logical expressions represents the contents of the black box?
(A) $\mathrm{X}+(-\mathrm{Y})$
(B) $\mathrm{X}^{*}(-\mathrm{Y})$
(C) $\mathrm{X}-\left({ }^{*} \mathrm{Y}\right)$
(D) $\mathrm{X}=(-\mathrm{Y})$
29. Suppose a logic circuit has four inputs $\mathrm{W}, \mathrm{X}, \mathrm{Y}$, and Z. How many possible input combinations are there?
(A) 4
(B) 8
(C) 16
(D) 32
30. What can be done to minimize the capacitance of the P-N junction in a semiconductor diode, thereby making the component effective as a high-speed RF switch?
(A) The surface area of the P-N junction can be maximized.
(B) A layer of intrinsic semiconductor can be placed between the P - and N -type materials.
(C) The frequency of the applied signal can be made as high as possible.
(D) The diode can be forward- biased with a high voltage.
31. Notch filter is a :
(A) Band pass filter
(B) Band stop filter
(C) Low pass filter
(D) High pass filter
32. What is the wavelength if the frequency is 4 MHz ?
(A) 75 meters
(B) 75 km
(C) 75 cm
(D) 75 mm
33. Signal attenuation, or degradation, exists in all media of wireless transmission. It is proportional to the :
(A) the distance between the transmitter and receiver
(B) difference of the distance between the transmitter and receiver
(C) square of the distance between the transmitter and receiver
(D) summation of the distance between the transmitter and receiver
34. TCP stands for :
(A) Transmission Control Protocol
(B) Transmission Capture Protocol
(C) Transmission Control Procedure
(D) Transistor Capacitor Power
35. A receiver that responds to a desired signal, but not to another signal very close by in frequency, has good
(A) Sensitivity.
(B) Noise figure.
(C) Dynamic range.
(D) Selectivity.
36. The domain name system (DNS) is chiefly used to translate hostnames into :
(A) Alphabetical address
(B) Numeric IP addresses
(C) Analog address
(D) All of the above
37. A continuously variable signal can be recovered from a signal having only a few discrete levels or states by means of:
(A) a ratio detector.
(B) a D/A converter.
(C) a product detector.
(D) an envelope detector.
38. An AM super heterodyne receiver with IF of 455 kHz is tuned to the carrier frequency of 1000 kHz . The image frequency is :
(A) 545 kHz
(B) 1 MHz
(C) 1455 kHz
(D) 1910 kHz
39. In FM signal with a modulation index mf is passed through a frequency Tripler. The wave in the output of the Tripler will have a modulation index of:
(A) mf
(B) 3 mf
(C) $\mathrm{mf} / 3$
(D) $\mathrm{mf} / 9$
40. The maximum power efficiency of an AM modulator is :
(A) 25%
(B) 33%
(C) 50%
(D) 100%
41. Which of the following modes is used to send image data over telephone lines?
(A) On/offkeying
(B) Fax
(C) AM
(D) Product detection
42. READY signal used in an intel 8085 microprocessor is :
(A) To indicate to user that the microprocessor is working and is ready for use.
(B) To provide proper WAIT states when the microprocessor is communicating with a slow peripheral device.
(C) To slow down a fast peripheral device so as to communicate at the microprocessor's device.
(D) None of the above.
43. The 8085 has six general-purpose registers to store 8-bit data; these are identified as :
(A) A, C, D, E, H, and L
(B) B , C, D, E, H, and I
(C) B , C, D, E, H, and L
(D) B , C, D, E, F, and L
44. The ALU includes five flip- flops, which are set or reset after an operation according to data conditions of the result in the accumulator and other registers. These flags are :
(A) Z, CY, S, P and AC
(B) A, CY, S, P and AC
(C) F, CY, S, P and C
(D) W, CY, S, P and A
45. Immediate addressing in 8085 example is :
(A) MVI data, R
(B) MVI R, data
(C) MOV R, data
(D) MOVE R, data
46. Trap interrupt is a non-maskable restart interrupt; it has the priority of any interrupt.
(A) Lowest
(B) Medium
(C) Less
(D) Highest
47. Which one is not correct in 8085 microprocessors ?
(A) RAC Rotate the accumulator to Carry. Bit 0 goes to bit 7 AND the Carry flag
(B) RAR Rotate the accumulator right through the carry. Bit 0 goes to the Carry and carry goes to bit 7.
(C) RLC Rotate the accumulator left. Bit 7 goes to bit 0 and the carry flag.
(D) RAL Rotate the accumulator left through the carry. Bit 7 goes to the carry and carry goes to bit 0 .
48. The 8085 has 16 address lines. So, it can address a total of memory locations :
(A) 65 K
(B) 64 K
(C) 128 K
(D) 16 K
49. The 8051 is an :
(A) 8-bit microcontroller with 8-bit data bus and 16-bit address bus.
(B) 16-bit microcontroller with 16-bit data bus and 16-bit address bus.
(C) 16-bit microcontroller with 8-bit data bus and 8-bit address bus.
(D) 8-bit microcontroller with 8-bit data bus and 8-bit address bus.
50. The 8051 has :
(A) 3 internal interrupts, 3 external interrupts.
(B) 4 internal interrupts, 2 external interrupts.
(C) 2 internal interrupts, 2 external interrupts.
(D) 3 internal interrupts, 2 external interrupts.
51. The interrupt has highest priority in 8051 56. Integrating instruments among the following is : microcontrollers:
(A) IE0
(B) TF 0
(C) IE1
(D) TF 1
52. In addressing of 8051 The storage of addresses that can be directly accessed is :
(A) external data RAM
(B) internal data ROM
(C) internal data RAM and SFRS
(D) external data ROM and SFRS
53. For measuring a very high resistance we should use :
(A) Kelvin's double bridge
(B) Wheatstone bridge
(C) Meggar
(D) None of the above
54. An ammeter shunt is useful because :
(A) It increases meter sensitivity.
(B) It makes a meter more physically rugged.
(C) It allows for measurement of a wide range of currents.
(D) It prevents overheating of the meter.
55. The main advantage of aFETVM over a conventional voltmeter is the fact that the FETVM :
(A) Can measure lower voltages.
(B) Draws less current from the circuit under test.
(C) Can withstand higher voltages safely.
(D) Is sensitive to AC as well as to DC .
(A) Ammeters
(B) Voltmeters
(C) Wattmeter
(D) Watt-hour meters
57. In an enhancement-mode MOSFET,
(A) the channel conducts fully with zero gate bias.
(B) the channel conducts partially with zero gate bias.
(C) the channel conducts ac but not dc.
(D) the channel does not conduct withzero gate bias.
58. The high input impedance of a MOSFET makes this type of device ideal for use in
(A) weak-signal amplifiers.
(B) high-power oscillators.
(C) high-current rectifiers.
(D) antenna tuning networks.
59. A significant difference between MOSFETs and JFETs is the fact that :
(A) MOSFETs can handle a wider range of gate bias voltages.
(B) MOSFETs can deliver greater output power.
(C) MOSFETs are more rugged.
(D) MOSFETs last longer.
60. An optocoupler consists of:
(A) two Zener diodes back-to- back.
(B) an LED and a photodiode.
(C) two NPN transistors in series.
(D) an NPN transistor followed by a PNP transistor.
\qquad

ENTRANCE TEST-2020

SCHOOL OF APPLIED SCIENCES AND TECHNOLOGY ELECTRONICS

Total Questions : 60
Time Allowed : 70 Minutes

Question Booklet Series
Roll No. :

Instructions for Candidates :

1. Write your Entrance Test Roll Number in the space provided at the top of this page of Question Booklet and fill up the necessary information in the spaces provided on the OMR Answer Sheet.
2. OMR Answer Sheet has an Original Copy and a Candidate's Copy glued beneath it at the top. While making entries in the Original Copy, candidate should ensure that the two copies are aligned properly so that the entries made in the Original Copy against each item are exactly copied in the Candidate's Copy.
3. All entries in the OMR Answer Sheet, including answers to questions, are to be recorded in the Original Copy only.
4. Choose the correct / most appropriate response for each question among the options A, B, C and D and darken the circle of the appropriate response completely. The incomplete darkened circle is not correctly read by the OMR Scanner and no complaint to this effect shall be entertained.
5. Use only blue/black ball point pen to darken the circle of correct/most appropriate response. In no case $\mathrm{gel} / \mathrm{ink}$ pen or pencil should be used.
6. Do not darken more than one circle of options for any question. A question with more than one darkened response shall be considered wrong.
7. There will be 'Negative Marking' for wrong answers. Each wrong answer will lead to the deduction of 0.25 marks from the total score of the candidate.
8. Only those candidates who would obtain positive score in Entrance Test Examination shall be eligible for admission.
9. Do not make any stray mark on the OMR sheet.
10. Calculators and mobiles shall not be permitted inside the examination hall.
11. Rough work, if any, should be done on the blank sheets provided with the question booklet.
12. OMR Answer Sheet must be handled carefully and it should not be folded or mutilated in which case it will not be evaluated.
13. Ensure that your OMR Answer Sheet has been signed by the Invigilator and the candidate himself/ herself.
14. At the end of the examination, hand over the OMR Answer Sheet to the invigilator who will first tear off the original OMR sheet in presence of the Candidate and hand over the Candidate's Copy to the candidate.
15. A 4-bit parallel full adder without any initial 5. A memory system has a total of 8 memory chips, carry requires :
(A) 8 half adders and 4 OR gates
(B) 8 half adders and 3 OR gates
(C) 7 half adders and 4 OR gates
(D) 7 half adoers and 3 OR gates
16. Each cell of a Random Access Memory contains :
(A) 6 MOS transistors
(B) 4 MOS transistors and 2 capacitors
(C) Two 2-input NOR and one X-NOR gates
(D) XOR gates and shift registers
17. The total number of operation codes and instructions in the 8085 microprocessor instruction set are \qquad and \qquad respectively.
(A) 74,244
(B) 72,244
(C) 74,246
(D) 72,246
18. The following program is run on an 8085 microprocessor.
Memory Address in Hex
2000
2003
2004
2005
2008
2009
Instructions
LXI SP, 1000 PUSH H PUSH D
CALL 2050
POP 2050
HALT
At the completion of execution of program the program counter contains \qquad and the stack pointer contains \qquad .
(A) $1025,0 \mathrm{CCF}$
(B) $1025,0 \mathrm{FFC}$
(C) $2050,0 \mathrm{CCF}$
(D) $2050,0 \mathrm{FFC}$
each with 12 address lines and 4 data lines. The total size of the memory system is :
(A) 32 Kbytes
(B) 48 Kbytes
(C) 128 Kbytes
(D) 384 Kbytes
19. In 8085 the number of output ports in the peripheral mapped I/O is restricted to :
(A) 128
(B) 256
(C) 512
(D) None of the above
20. Different ways of making operands available in 8085 are called :
(A) Instruction Fetch
(B) Addressing Modes
(C) Memory Fetch
(D) Data Fetch
21. Which of the following techniques is preferable for transferring large amount of data to and from the memory in a short time ?
(A) Programmed I/O
(B) Interrupt driven I/O
(C) DMA
(D) None of these
22. How are the bits of the register PSW affectec if we select Bank2 of 8051 ?
(A) PSW. $5=0$ and PSW. $4=1$
(B) PSW. $2=0$ and PSW. $3=1$
(C) PSW. $3=1$ and PSW. $4=1$
(D) PSW. $3=0$ and PSW. $4=1$
23. Number of I / O ports in the 8051 microcontroller 15. A signal $x(t)$, having peak to peak signal swing are :
(A) 3 ports
(B) 4 ports
(C) 5 ports
(D) 4 ports with last port having 5 pins
24. A. 1.0 KHz square wave signal is passed through an ideal filter having cut-off at 4500 Hz . It is used to amplitude modulate a carrier of 10 KHz . The spectral width of modulated signal is :
(A) 8.0 KHz
(B) 9.0 KHz
(C) 4.5 KHz
(D) 10 KHz
25. The Carlson bandwidth of an FM system is 170 kHz when the frequency deviation is 75 kHz . The modulation index β is :
(A) 15
(B) 2.29
(C) 7.5
(D) None of the above
26. Envelope detection is used for :
(A) $\mathrm{SSB} / \mathrm{SC}$
(B) DSB-AM
(C) SSB-Pilot carrier
(D) $\mathrm{DSB} / \mathrm{SC}$
27. Source encoding in a data communication system is done in order to :
(A) Enhance the information transmission rate
(B) Reduce the transmission errors
(C) Conserve the transmitted power
(D) Facilitate clock recovery in the receiver
28. Which of the following requires a synchronizing signal?
(A) Single channel PPM system
(B) PAM
(C) DM
(D) All of the mentioned
29. A signal $\mathrm{x}(\mathrm{t})=\mathrm{A} \sin \omega \mathrm{t}$ is affected by noise $n(t)$. N represents the noise power. The SNR of a system is:
(A) $\mathrm{A}^{2} / \mathrm{N}$
(A) DSB-SC systems
(B) FSK systems
(B) $2 \mathrm{~A}^{2} / \mathrm{N}$
(C) Pulse width modulation
(C) $\mathrm{A}^{2} /(2 \mathrm{~N})$
(D) None of above 2.048 V , is sampled. The sampling rate is 8000 samples $/ \mathrm{sec}$. Each sample is coded as an 11 bit linear PCM code. The step size is :
(A) 4 mV
(B) 2 mV
(C) 0.5 mV
(D) 1 mV
30. To separate channels in a TDM receiver, it is necessary to use :
(A) AND gates
(B) Band pass filters
(C) Differentiation
(D) Integration
31. A signal can be recovered from its sample by 25 . using :
(A) Low pass filter
(B) High pass filter
(C) Band pass filter
(D) Band stop filter
32. A cordless telephone using separate frequencies for transmission in base and portable units is known as :
(A) Duplex arrangement
(B) Half duplex arrangement
(C) Either (A) or (B)
(D) Neither (A) nor (B)
33. Which of the following memory devices stores information such as subscriber's identification number in GSM ?
(A) Register
(B) Flip flop
(C) SIM
(D) SMS
34. \qquad manages the switching function in GSM.
(A) BSS
(B) NSS
(C) OSS
(D) MSC
35. What is frequency reuse ?
(A) Process of selecting and allocating channels
(B) Process of selection of mobile users
(C) Process of selecting frequency of mobile equipment
(D) Process of selection of number of cells
\qquad gets propagated through networks and technologies like SMS, Bluetooth, wireless medium, USB's and infrared to affect mobile phones.
(A) Worms
(B) Antivirus
(C) Malware
(D) Multimedia files
36. In majority of instruments, damping is provided by :
(A) Fluid friction
(B) Spring
(C) Eddy currents
(D) All of the above
37. A universal RLC bridge uses :
(A) Maxwell bridge configuration for measurement of inductance and De Santy's bridge for measurement of capacitance
(B) Maxwell Wein bridge configuration for measurement of inductance and De Santy's bridge for measurement of capacitance
(C) Maxwell Wein bridge configuration for measurement of inductance and Wein bridge for measurement of capacitance
(D) None of the above
38. Capacitance sensor can measure very small displacement. It can be formed by varying :
(A) Separation
(B) Area
(C) Permittivity
(D) Either (A) or (B) or (C)
39. If the quantity to be measured remains constant 34. The current through a branch in a linear network during the process of taking the repeated measurements then the random errors can be eliminated by :
(A) Calculating the mean of the number of repeated measurements
(B) Calculating the median of the number of repeated measurements
(C) Calculating the sum of the numbers of repeated measurements
(D) Either (A) or (B)
40. LVDT which is an instrument for the measurement of displacement, works on the principle of :
(A) Linear inductance
(B) Non-linear inductance
(C) Mutual inductance
(D) Linear capacitance
41. Q factor of a series resonance circuit can be increased by using :
(A) A coil of large inductance, and small Ohmic resistance
(B) A coil of large inductance and large Ohmic resistance
(C) A coil of small inductance and large Ohmic resistance
(D) A coil of small inductance, and small Ohmic resistance
42. Superposition theorem is applicable to :
(A) Power only
(B) Current only
(C) Voltage only
(D) Current and Voltage both
43. At $t=0+$ with zero initial condition, which of the following act as an open circuit ?
(A) Inductor
(B) Capacitor
(C) Resistor
(D) All of the above
is 2 A when the input source voltage is 10 V . If the voltage is reduced to 1 V and the polarity is reversed, the current through the branch is :
(A) -2.0
(B) -0.2
(C) +0.2
(D) +2.0
44. dBm is a:
(A) Unit of Power
(B) Urit of Voltage
(C) Ratio of Power
(D) None of the above
45. Mobility of holes in intrinsic Si is :
(A) $0.048 \mathrm{~m}^{2} / \mathrm{Vs}$
(B) $0.135 \mathrm{~m}^{2} / \mathrm{Vs}$
(C) $1350 \mathrm{~m}^{2} / \mathrm{Vs}$
(D) $480 \mathrm{~m}^{2} / \mathrm{Vs}$
46. The reverse saturation current I_{CO} of Si diode varies as :
(A) T^{2}
(B) T^{3}
(C) $\mathrm{T}^{1 / 2}$
(D) $\mathrm{T}^{3 / 2}$
47. The tunnel diode :
(A) Has a tiny hole through its centre to facilitate tunneling
(B) Is a point contact diode with a very high value of reverse resistance
(C) Uses a high doping level to provide a narrow junction
(D) None of the above
48. For a BJT, D_{E}, D_{B}, and D_{C} are doping concentrations for emitter, base, and collector respectively then :
(A) $\mathrm{D}_{\mathrm{C}}>\mathrm{D}_{\mathrm{E}}>\mathrm{D}_{\mathrm{B}}$
(B) $\mathrm{D}_{\mathrm{E}}>\mathrm{D}_{\mathrm{C}}>\mathrm{D}_{\mathrm{B}}$
(C) $\mathrm{D}_{\mathrm{E}}>\mathrm{D}_{\mathrm{B}}>\mathrm{D}_{\mathrm{C}}$
(D) $\mathrm{D}_{\mathrm{C}}>\mathrm{D}_{\mathrm{B}}>\mathrm{D}_{\mathrm{E}}$
49. The voltage divider bias is used to make the Q-point :
(A) Independent of β
(B) Independent of $V_{B E}$
(C) Dependent of β
(D) None of the above
50. The h - parameters of a BJT are :
(A) Dependent on R_{L}
(B) Dependent on I_{CQ}
(C) Independent of I_{CQ}
(D) Constant
51. The transition cut-off frequency f_{T} at which the magnitude of short circuit current gain of transistor in CE configuration is :
(A) Half of the mid-band gain
(B) One-tenth of the mid-band gain
(C) Unity
(D) 100
52. Dynamic transfer curve of an amplifier is a plot of :
(A) Output voltage $v s$. input current
(B) Output current or voltage vs. input excitation
(C) Output current vs. input current
(D) None of the above
53. Low frequency response of amplifiers is mainly limited by :
(A) Coupling capacitors
(B) Bypass capacitors
(C) Biasing circuit
(D) Input and Output capacitors
(A) Very high voltage and current gains
(B) Very high input resistance and current gains
(C) Very low resistance and current gain
(D) None of the above
54. Cross-over distortion in Class-B push-pull amplifiers can be overcome by :
(A) Operating it as Class-C
(B) Operating it as Class- AB
(C) Using a low leakage transformer
(D) None of the above
55. Why are R-C oscillators unsuitable for radio frequency applications ?
(A) At higher radio frequencies capacitors required have non-practical values
(B) Resistors and capacitors get heated up at higher frequencies
(C) Resistors cause tremendous power loss at higher frequencies
(D) None of the above
56. The frequency at which the differential gain in Op Amps is zero dB is called :
(A) Unity gain cross-over frequency
(B) Cross over frequency
(C) Zero-dB frequency
(D) Cut-off frequency
57. In cascade tuned amplifier, the impedance transformation is achieved through :
(A) Tapping of inductor of the tank circuit
(B) Tapping of capacitor of the tank circuit
(C) Tapping both of the above (A and B)
(D) None of the above
58. A differentiator is rarely used in analog computers because :
(A) It reduces the gain
(B) It decreases the output of the amplifier
(C) It amplifies noise, drift, and other unwanted disturbances
(D) None of the above
59. For an Op-amp with negative feedback, the output is :
(A) Equal to the input
(B) Increased
(C) Fed back to the inverting input
(D) Fed back to the non-inverting input
60. For operating a p-channel MOSFET, the gate is applied a :
(A) Positive potential (for enhancement mode)
(B) Negative potential (for depletion mode)
(C) Negative potential (for enhancement mode)
(D) None of the above
61. An SCR may be turned off by:
(A) By reducing its anode to cathode voltage
(B) By removing the gate voltage pulse
(C) By reducing the current below the holding value
(D) None of the above
62. In case a reverse biased photodiode is kept in dark condition, the current flowing through the device corresponds to :
(A) Maximum value of current which can flow through the device
(B) Value of reverse saturation current
(C) Normal value of current
(D) Zero
63. The efficiency of an LED for generating light is directly proportional to the :
(A) Temperature
(B) Voltage applied
(C) Level of doping used
(D) Current injected
64. Which of the following is a unique property of laser ?
(A) Directional
(B) Speed
(C) Coherence
(D) Wavelength
65. The output of a 2 -input logic gate is 1 when all its inputs are at logic 0 . The gate is:
(A) A NAND or an EX-OR gate
(B) A NOR or an EX-OR gate
(C) An AND or an EX-NOR gate
(D) None of the above
66. When signed numbers are used in binary arithmetic, then which of the following notations would have unique representation for zero ?
(A) Sign-magnitude
(B) 1's complement
(C) 2's complement
(D) 9's complement
67. A 4-bit modulo 16 used JK flip flop. If the progression delay of each flip flop is 50 ms , the maximum clock frequency is equal to :
(A) 800 MHz
(B) 12.5 MHz
(C) 4 MHz
(D) None of the above
68. If a counter having 10 flip flops is initially at 0 , what count will it hold after 2060 pulses ?
(A) 0000001100
(B) 0000011100
(C) 0000011000
(D) 0000001110
69. Which parameters are also called short circuit parameters?
(A) z
(B) y
(C) h
(D) None of the above
70. An ideal source consists of 5 V in series with $10 \mathrm{k} \Omega$ resistance. The current magnitude of equivalent current source is :
(A) 2 mA
(B) 3.5 mA
(C) 0.5 mA
(D) None of the above
71. The voltage ' V ' across 3Ω resistor in figure is equal to:

(A) 3 V
(B) -3 V
(C) 5 V
(D) 4 V
72. A generator of internal impedance ' Z_{1} ' deliver maximum power to a load impedance, Z_{1} only if:
(A) $Z_{1}<Z_{i}$
(B) $Z_{1}>Z_{1}$
(C) $Z_{1}=Z_{i}$
(D) $Z_{1}=2 Z_{i}$
73. In the depletion region of a pn junction, there is a shortage of:
(A) Acceptor Ions
(B) Holes and Electrons
(C) Donor Ions
(D) None of the above
74. The ripple factor of a half-wave rectifier is :
(A) 2
(B) 1.21
(C) 2.5
(D) 0.48
75. The frequency of a full-wave signal is equal to :
(A) Twice the line frequency
(B) Equal to the line frequency
(C) One-half of the line frequency
(D) One-fourth of the line frequency
76. Avalanche breakdown in a semiconductor take place:
(A) When forward current exceeds a certain valu
(B) When potential barrier is reduced to zero
(C) When reverse bias exceeds a certain value
(D) When forward bias exceeds a certain value
77. The emitter of a transistor is \qquad doped.
(A) Lightly
(B) Heavily
(C) Moderately
(D) None of the above
78. $\mathrm{I}_{\mathrm{C}}=\alpha \mathrm{I}_{\mathrm{E}}+$ \qquad
(A) I_{B}
(B) $I_{C E O}$
(C) $I_{\text {сво }}$
(D) βI_{B}
79. The phase difference between the input and outpu voltages of a transistor connected in commor collector arrangement is :
(A) 180°
(B) 270°
(C) 90°
(D) 0°
80. The constant-current region of a JFET lies between:
(A) Cut off and saturation
(B) Cut off and pinch-off
(C) 0 and $I_{\text {DSs }}$
(D) Pinch-off and breakdown
81. The decimal equivalent of hex number $(1 \mathrm{~A} 53)_{16}$ is: 20 . The commercially available 8 -input multiplexer
(A) $(6793)_{10}$
(B) $(6739)_{10}$
(C) $(6973)_{10}$
(D) $(6379)_{10}$
82. A ring counter consisting of five Flip-Flops will have:
(A) 5 states
(B) 10 states
(C) 32 states
(D) Infinite states
83. The 2 's complement of the number $(1101101)_{2}$ is :
(A) $(0101110)_{2}$
(B) $(0111110)_{2}$
(C) $(0110010)_{2}$
(D) $(0010011)_{2}$
84. When simplified with Boolean Algebra $(x+y)(x+z)$ sinfificsto:
(A) x
(B) $x+x(y+z)$
(C) $x(1+y z)$
(D) $x+y z$
85. The code where all successive numbers differ from their preceding number by single bit is:
(A) Binary code
(B) BCD code
(C) Excess-3 code
(D) Gray code
86. Which of the following is the fastest logic ?
(A) TTL
(B) ECL
(C) CMOS
(D) PMOS
87. If the input to T-flip flop is 100 Hz signal, the final output of the three T-flip flops in cascade is :
(A) 800 Hz
(B) 300 Hz
(C) 33.3 Hz
(D) 12.5 Hz integrated circuit in the TTL family is :
(A) 7495
(B) 7490
(C) 74151
(D) 74154
88. How many address bits are required to represent 4K memory?
(A) 5 bits
(B) 12 bits
(C) 8 bits
(D) 10 bits
89. In the a.c. equivalent circuit of a transistor amplifier, the capacitors are considered :
(A) Short
(B) Open
(C) Partially Open
(D) None of the above
90. The purpose of emitter capacitor (i.e. capacitor across R_{E}) is to:
(A) Avoid voltage gain drop
(B) Forward bias the emitter
(C) Reduce noise in the amplifier
(D) None of the above
91. If a transistor is operated in such a way that output current flows for 160 degrees of the input signal, then it is \qquad operation.
(A) Class A
(B) Class C
(C) Class B
(D) Class AB
92. Which coupling has the best frequency response ?
(A) Direct
(B) RC
(C) Transformer
(D) Transistor
93. If gain without feedback and feedback factor are A and β respectively, then gain with negative feedback is given by:
(A) $\mathrm{A} /(1-\mathrm{A} \beta)$
(B) $(1+A \beta) / A$
(C) $(1-A \beta) / \mathrm{A}$
(D) $\mathrm{A} /(1+\mathrm{A} \beta)$
94. The frequency of oscillation is \qquad L and C in an LCoscillator.
(A) Inversely proportional to square root of
(B) Directly proportional to square root of
(C) Inversely proportional to square of
(D) Directly proportional to square of
95. Given three amplifiers with each having a gain of 10 dB and are connected in cascade. How much is the overall gain in dBs ?
(A) 1000
(B) 100
(C) 30
(D) 20
96. With given full-scale deflection currents, which meter is the most sensitive?
(A) 10 mA
(B) 1 mA
(C) 1 A
(D) $1 \mu \mathrm{~A}$
97. An ammeter's ideal resistance should be :
(A) Zero
(B) Unity
(C) Infinite
(D) The same as the circuit's resistance
98. The force in analog instrument which brings the moving system to rest in its final position is :
(A) Damping force
(B) Controlling force
(C) Deflection force
(D) None of the above
99. The resistance of a moving-coil instrument is 10Ω and gives full-scale deflection at 10 mA . Calculate the resistance of the shunt required to convert the instrument to give full-scale deflection when the circuit current is 5 A :
(A) 0.02004Ω
(B) 0.020004Ω
(C) 20.4Ω
(D) 2.04Ω
100. What is the typical input resistance of the $\mu \mathrm{A} 741$ op-amp when measured under open loop?
(A) $1.5 \mathrm{M} \Omega$
(B) $3 \mathrm{M} \Omega$
(C) $2 \mathrm{M} \Omega$
(D) $2.5 \mathrm{M} \Omega$
101. What is the most popular IC used in timing circuits?
(A) 555 timer
(B) 741
(C) LM317
(D) LM340
102. An op-amp circuit that has its output tied directly to the inverting terminal is called a :
(A) Current follower
(B) Inverting amplifier
(C) Non-inverting amplifier
(D) Voltage follower
103. What is the slew rate of a 741 operational amplifier?
(A) $1 \mathrm{~V} / \mathrm{ms}$
(B) $0.5 \mathrm{~V} / \mathrm{ms}$
(C) $1 \mathrm{~V} / \mu \mathrm{s}$
(D) $0.5 \mathrm{~V} / \mu \mathrm{s}$
104. What element of a CRT releases electrons when heated indirectly by a filament?
(A) Cathode
(B) Grid
(C) Anode
(D) Phosphor screen
105. Which part of the following is not a basic part of a CRT?
(A) Electron Gun
(B) Focusing and accelerating elements
(C) Horizontal and vertical deflecting plates .
(D) Sawtooth Generator
106. The bridge used to measure high-Q inductances ($\mathrm{Q}>10$) is :
(A) Wheatstone bridge
(B) Wien bridge
(C) Hay bridge
(D) Schering bridge
107. Kelvin double bridge is used to measure :
(A) Capacitance
(B) Low-value resistance
(C) Low-Q inductance
(D) High value resistance
108. The first microprocessor built by the Intel Corporation was called:
(A) 8008
(B) 8080
(C) 4004
(D) 8800
109. The number of output pins of a 8085 microprocessor are:
(A) 40
(B) 19
(C) 21
(D) 27
110. Which signals of 8085 microprocessor is used to insert wait states?
(A) READY
(B) ALE
(C) HOLD
(D) INTR
111. Which of the following flag conditions is not available in 8085 microprocessor?
(A) Zero Flag
(B) Parity Flag
(C) Overflow Flag
(D) Auxiliary Carry Flag
112. Some of the pins of an 8085 CPU and their functions are listed below. Identify the correct answer that matches the pins to their respective functions :
P. RST 7.5
113. Selects IO or memory
Q. Hold
R. $I O / \bar{M}$
S. ALE
114. Demultiplexes the address and data bus
115. Is a vectored interrupt
116. Facilitates direct memory access
(A) P-3, Q-2, R-1, S-4
(B) P-4, Q-1, R-2, S-3
(C) P-3, Q-4, R-1, S-2
(D) P-2, Q-3, R-4, S-1
117. How many instructions does microprocessor 8085 have?
(A) 255
(B) 256
(C) 246
(D) 250
118. What is the vectored address of interrupt RST 5.5 ?
(A) 0034 H
(B) 0024 H
(C) 0036 H
(D) 002 CH
119. If the status of the control lines S_{1} and S_{0} is low, then 8085 microprocessor is performing :
(A) Reset operation
(B) Hold operation
(C) Haltoperation
(D) Interrupt acknowledge
120. Modulation is done in :
(A) Transmitter
(B) Radio receiver
(C) Between transmitter and radio receiver
(D) None of the above
121. In an AM wave, useful power is carried by :
(A) Carrier
(B) Sidebands
(C) Both sidebands and carrier
(D) None of the above
122. Consider the following Amplitude Modulated (AM) signal,
$X_{A M}(t)=10\left(1+0.5 \sin 2 \pi f_{m} t\right) \cos 2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{t}$, where $\mathrm{f}_{\mathrm{m}}<\mathrm{B}$
The average side-band power for the AM signal given above is :
(A) 25 W
(B) 12.5 W
(C) 6.25 W
(D) 3.125 W
123. Which block is not present in Superheterodyne receiver?
(A) IF Amplifier and Filter
(B) RF Amplifier and Filter
(C) Mixer
(D) Schmitt Trigger
124. The IF is 455 kHz . If the radio receiver is tuned to 855 kHz , the local oscillator frequency is :
(A) 455 kHz
(B) 1310 kHz
(C) 1500 kHz
(D) 1520 kHz
125. A 10 MHz carrier is frequency modulated by a sinusoidal signal of 500 Hz , the maximum frequency deviation being 50 KHz . The bandwidth required as given by the Carson's rule is :
(A) 205 kHz
(B) 300 kHz
(C) 305 kHz
(D) 101 kHz
126. In TV transmission, sound signal is \qquad modulated.
(A) Amplitude
(B) Frequency
(C) Phase
(D) None of the above
127. A carrier $\mathrm{A}_{c} \cdot \cos \left(\omega_{c} \mathrm{t}\right)$ is frequency modulated by a singla $\mathrm{E}_{\mathrm{m}} \cdot \cos \left(\omega_{\mathrm{m}} \mathrm{t}\right)$. The modulation index is m_{r} The expression for the resulting FM signal is :
(A) $\mathrm{A}_{\mathrm{c}} \cdot \cos \left[\omega_{\mathrm{c}} \mathrm{t}+\mathrm{m}_{\mathrm{f}} \sin \left(\omega_{\mathrm{m}} \mathrm{t}\right)\right]$
(B) $A_{c} \cdot \cos \left[\omega_{c} t+m_{r} \cos \left(\omega_{m} t\right)\right]$
(C) $A_{c} \cdot \cos \left[\omega_{c} t+2 \pi \cdot m_{f} \sin \left(\omega_{m} t\right)\right]$
(D) $\mathrm{A}_{\mathrm{c}} \cdot \cos \left[\omega_{\mathrm{c}} \mathrm{t}+2 \pi \cdot \mathrm{~m}_{\mathrm{r}} \mathrm{E}_{\mathrm{m}} \cdot \omega_{\mathrm{m}} \cdot \cos \left(\omega_{\mathrm{m}} \mathrm{t}\right)\right]$
128. Figure given below shows Fourier spectra of signal $x(t)$:

The Nyquist sampling rate for $\mathrm{x}(\mathrm{t})$ is :
(A) 100 kHz
(B) 200 kHz
(C) 300 kHz
(D) 50 kHz
58. The PAM signal can be detected by :
(A) Bandpass filter
(B) Bandstop filter
(C) Highpass filter
(D) Lowpass filter
59. The main disadvantage of PCM is :
(A) Large bandwidth
(B) Large power
(C) Complex circuitry
(D) Quantization noise
60. In PWM signal reception, the Schmitt trigger circuit is used :
(A) To remove noise
(B) To produce ramp signal
(C) For synchronization
(D) None of the above

1. The five flags in 8085 are designated as :
(A) $\mathrm{Z}, \mathrm{CY}, \mathrm{S}, \mathrm{P}, \mathrm{AC}$
(B) $\mathrm{D}, \mathrm{Z}, \mathrm{S}, \mathrm{P}, \mathrm{AC}$
(C) $\mathrm{Z}, \mathrm{C}, \mathrm{S}, \mathrm{P}, \mathrm{AC}$
(D) D, CY, S, P, AC
2. In 8085 , pins for SID and SOD are :
(A) 4 and 5 respectively
(B) 5 and 4 respectively
(C) 3 and 4 respectively
(D) 4 and 3 respectively
3. In 8085 microprocessor :
(A) P flag is set when the result has even parity
(B) P flag is set when the result has odd parity
(C) P flag is reset when the result has even parity
(D) None of the above
4. In 8085 microprocessor, HL register pair is used for storing :
(A) Address of memory
(B) Data
(C) Address of next instruction
(D) Address of current instruction
5. What is the vectored address of interrupt RST5?
(A) 0040 H
(B) 0028 H
(C) 0005 H
(D) 0008 H
6. \mathbf{P} : Program counter is the register, which stores the address of the next instruction to be executed.

Q: Stack pointer stores the address of the top of the stack.

Out of these two statements, which statement(s) is (are) true?
(A) Only P
(B) Only Q
(C) Both P and Q
(D) None of them
7. A stack is :
(A) An 8 -bit register in the 8085 microprocessor
(B) A 16-bit register in the 8085 microprocessor
(C) A set of memory locations in R/W memory reserved for storing information temporarily during the execution of a program
(D) A 16-bit memory address stored in the program counter
8. Consider the table given below

$\mathbf{I O} / \overline{\mathbf{M}}$	\mathbf{S}_{1}	$\mathrm{~S}_{0}$	Machine cycle
0	1	1	X
1	0	1	Y
1	1	1	Z

Here S_{0} and S_{1} are status signals.
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are respectively :
(A) Interrupt Acknowledgment, I/O read, Opcode Fetch
(B) Interrupt Acknowledgment, I/O write, Opcode Fetch
(C) Opcode Fetch, I/O read, Interrupt Acknowledgment
(D) Opcode Fetch, I/O write, Interrupt Acknowledgment
9. At 100% amplitude modulation, the power in each sideband is \qquad of that of carrier.
(A) 50%
(B) 40%
(C) 60%
(D) 25%
10. Consider the amplitude modulated (AM) signal $A_{c} \cos \omega_{c} t+2 \cos \omega_{m} t \cos \omega_{c} t$. For demodulating the signal using envelope detector, the minimum value of A_{C} should be :
(A) 2
(B) 1
(C) 0.5
(D) 0
11. In amplitude modulation, bandwidth is \qquad the highest frequency of audio signal.
(A) Thrice
(B) Four times
(C) Twice
(D) None of the above
12. Superheterodyne principle refers to:
(A) Using a large number of amplifier stages
(B) Using a push-pull circuit
(C) Obtaining lower fixed intermediate frequency
(D) Obtaining higher fixed intermediate frequency
13. The signal $\cos \omega_{C} t+0.5 \cos \omega_{m} t \cdot \sin \omega_{C} t$ is :
(A) FM only
(B) AM only
(C) Both AM and FM
(D) Neither AM nor FM
14. Consider the frequency modulated signal $10 \cos \left[2 \pi .10^{5} t+5 \sin (2 \pi .1500 t)+7.5 \sin (2 \pi .1000 t)\right]$ with carrier frequency of $10^{5} \mathrm{~Hz}$. The modulation index is :
(A) 12.5
(B) 10
(C) 7.5
(D) 5
15. The modulation frequency of an FM is doubled. How does the modulation index change?
(A) Gets halved
(B) Gets doubled
(C) Gets increased by 50 percent
(D) Remains unchanged
16. The major advantage of FM over AM is :
(A) Reception is less noisy
(B) Higher carrier frequency
(C) Smaller bandwidth
(D) Small frequency deviation
17. A signal of maximum frequency of 10 kHz is sampled at Nyquist rate. The time interval between two successive samples is :
(A) $50 \mu \mathrm{~s}$
(B) $100 \mu \mathrm{~s}$
(C) $1000 \mu \mathrm{~s}$
(D) $5 \mu \mathrm{~s}$
18. Drawback of using PAM method is :
(A) Bandwidth is very large as compared to modulating signal
(B) Varying amplitude of carrier varies the peak power required for transmission
(C) Due to varying amplitude of carrier, it is difficult to remove noise at receiver
(D) All of the above
19. Pulse Time Modulation (PTM) includes :
(A) Pulse width modulation
(B) Pulse position modulation
(C) Pulse amplitude modulation
(D) Both (A) and (B)
20. In Pulse Code Modulation System :
(A) Quantising noise can be overcome by companding
(B) Large bandwidth is required
(C) Quantising noise can be reduced by decreasing the number of standard levels
(D) Suffers from the disadvantage of its incompatibility with Time Division Multiplexing (TDM)
21. Thevenin's theorem replaces a complicated circuit facing a load by an :
(A) Ideal voltage source and parallel resistor
(B) Ideal current source and parallel resistor
(C) Ideal current source and series resistor
(D) Ideal voltage source and series resistor
22. The output voltage of an ideal voltage source is :
(A) Zero
(B) Constant
(C) Dependent on load resistance
(D) Dependent on internal resistance
23. The total reactance of a series RLC circuit at 27. Zener diodes are used primarily as : resonance is :
(A) Zero
(B) Equal to the resistance
(C) Infinity
(D) Capacitive
24. If the value of resonant frequency is 50 kHz in a series RLC circuit along with the bandwidth of about 1 kHz , then what would be the value of quality factor?
(A) 50
(B) 5
(C) 100
(D) 500
25. Semiconductors have \qquad temperature coefficient of resistance.
(A) Positive
(B) Zero
(C) Negative
(D) None of the above
26. The leakage current across a pn junction is due to :
(A) Minority carriers
(B) Majority carriers
(C) Junction capacitance
(D) None of the above
(A) Amplifiers
(B) Voltage regulators
(C) Rectifiers
(D) Oscillators
28. The average value of half-wave rectified voltage with a peak value of 200 V is :
(A) 63.7 V
(B) 127.3 V
(C) 141 V
(D) 0 V
29. In a transistor if $\beta=100$ and collector current is 10 mA , then emitter current I_{E} is :
(A) 100 mA
(B) 10.1 mA
(C) 110 mA
(D) None of the above
30. Which one of the following is not an NPN transistor?
(A) BC 548
(B) BC 557 B
(C) 2 N 2222
(D) BC 547 B
31. In voltage divider bias, $\mathrm{V}_{\mathrm{CC}}=25 \mathrm{~V} ; \mathrm{R}_{1}=10 \mathrm{k} \Omega$ (Upper resistor in the divider); $R_{2}=2.2 \mathrm{k} \Omega$ (Lower resistor in the divider); $\mathrm{R}_{\mathrm{C}}=3.6 \mathrm{k} \Omega$ and $R_{E}=1 \mathrm{k} \Omega$. Assuming Silicon transistor, what is the emitter voltage?
(A) 6.7 V
(B) 5.3 V
(C) 4.9 V
(D) 3.8 V
32. In a JFET, $I_{D S S}$ is known as :
(A) Drain to source current with source open
(B) Drain to source current with gate shorted to ground
(C) Drain to source current with gate open
(D) Drain to source current with source shorted to ground
33. The logic function $\mathrm{f}=\overline{(\mathrm{x} \cdot \overline{\mathrm{y}})+(\overline{\mathrm{x}} \cdot \mathrm{y})}$ is the same as :
(A) $f=(x+y)(\bar{x}+\bar{y})$
(B) $f=(\bar{x}+y)(x+\bar{y})$
(C) $f=(x \cdot y) \cdot(\bar{x} \bar{y})$
(D) None of the above
34. How many data select lines are required for selecting eight inputs?
(A) 1
(B) 2
(C) 3
(D) 4
35. The octal equivalent of $(\mathrm{B} 2 \mathrm{~F})_{16}$ is :
(A) $(5547)_{8} *$
(B) $(5457)_{8}$
(C) $(7547)_{8}$
(D) $(11010)_{8}$
36. While assigning the bit(s) to the cells, Karnaugh Map follows :
(A) Excess-3 codes
(B) Gray code
(C) Straight binary code
(D) BCD code
37. A square wave with a period of $10 \mu \mathrm{~s}$ drives a T flip-flop (with T at high level). The period of the output signal will be :
(A) $100 \mu \mathrm{~s}$
(B) $20 \mu \mathrm{~s}$
(C) $10 \mu \mathrm{~s}$
(D) $5 \mu \mathrm{~s}$
38. How many flip-flops are required to produce a divide-by-128 device?
(A) 1
(B) 4
(C) 6
(D) 7
39. In this type of counter, the output of the last stage is connected to the D input of the first stage :
(A) Ring Counter
(B) Johnson Counter
(C) Up-Down Counter
(D) All of the above

40．There are \qquad basic types of shift registers．
（A）Six
（B）Four
（C）One
（D）Many
41. \qquad coupling has the best frequency response．
（A） RC
（B）Transformer
（C）Direct
（D）None of the above
42．In an RC coupling scheme，the coupling capacitor C_{C} must be large enough ：
（A）To pass d．c．between the stages
（B）Not to attenuate the low frequencies
（C）Not to attenuate the high frequencies
（D）To dissipate high power
43．Class \qquad power amplifier has the highest collector efficiency．
（A） C
（B） A
（C） B
（D） AB
44．If a transistor amplifier feeds a load of low resistance（e．g．speaker），then voltage gain will be ：
（A）High
（B）Very high
（C）Moderate
（D）Low

45．When negative voltage feedback is applied to an amplifier，its bandwidth ：
（A）Increases
（B）Decreases
（C）Remains the same
（D）Becomes infinite
46．In a certain oscillator， $\mathrm{A}_{\mathrm{v}} \doteq 50$ ．The attenuation of the feedback circuit must be ：
（A） 1
（B） 0.01
（C） 10
（D） 0.02
47．The resonant angular frequency of an RC oscillator is ：
（A）$\frac{1}{\mathrm{RC}}$
（B）$\frac{1}{2 \pi R C}$
（C）$\frac{1}{2 \pi \sqrt{\mathrm{LC}}}$
（D）$\frac{1}{2 \pi \mathrm{LC}}$
48. \qquad is a fixed frequency oscillator．
（A）Phase－shift oscillator
（B）Hartley oscillator
（C）Colpitt＇s oscillator
（D）Crystal oscillator
49. In the op-amp circuit shown below, the voltage V_{0} is :

(A) $3 \mathrm{~V}_{\mathrm{s} 1}-6 \mathrm{~V}_{\mathrm{S} 2}$
(B) $2 \mathrm{~V}_{\mathrm{s} 1}-3 \mathrm{~V}_{\mathrm{s} 2}$
(C) $2 \mathrm{~V}_{\mathrm{s} 1}-2 \mathrm{~V}_{\mathrm{s} 2}$
(D) $3 \mathrm{~V}_{\mathrm{s} 1}-2 \mathrm{~V}_{\mathrm{s} 2}$
50. CMRR for an OP-AMP is :
(A) $20 \log _{10}\left(\frac{A_{\text {com }}}{A_{\text {diff }}}\right)$
(B) $20 \log _{10}\left(\frac{A_{\text {diff }}}{A_{\text {com }}}\right)$
(C) $20 \log _{20}\left(\frac{A_{\text {com }}}{A_{\text {diff }}}\right)$
(D) $10 \log _{10}\left(\frac{A_{\text {diff }}}{A_{\text {com }}}\right)$
51. Op-amp integrator uses:
(A) Capacitor as feedback element
(B) Resistor as feedback element
(C) Inductor as feedback element
(D) A simple wire as feedback element
52. 555 timer is a :
(A) 8-pin DII IC
(B) 8-pin TOP IC
(C) 14-pin DIP IC
(D) 8-pin flat package IC
53. A galvanometer in series with a high resistance is called :
(A) An ammeter
(B) A voltmeter
(C) A wattmeter
(D) Ohmmeter
54. Two multimeters A and B have sensitivities of $10 \mathrm{k} \Omega / \mathrm{V}$ and $30 \mathrm{k} \Omega / \mathrm{V}$ respectively. Then :
(A) Multimeter A is more sensitive
(B) Multimeter B is more sensitive
(C) Both are equally sensitive
(D) None of the above
55. The value of multiplier resistor required to design a voltmeter of 10 V range with a PMMC of internal resistance of $1 \mathrm{~K} \Omega$ and $\mathrm{I}_{\text {fsd }}=100 \mu \mathrm{~A}$ is :
(A) $1 \mathrm{~K} \Omega$
(B) $9 \mathrm{~K} \Omega$
(C) $10 \mathrm{~K} \Omega$
(D) $99 \mathrm{~K} \Omega$
56. The value of external resistance at half scale deflection in case of series type ohmmeter is equal to :
(A) Half the internal resistance of the meter
(B) The internal resistance of the meter
(C) $1 / 4^{\text {th }}$ of the internal resistance of the meter
(D) None of the above
57. Schering bridge is used to :
(A) Measure the insulating properties of electrical cables and equipment
(B) Determine the inductance
(C) Measure mutual inductance
(D) Measure low resistance
58. AQUADAG is a:
(A) Non-conductive coating on the screen of a CRT to collect the high velocity electrons
(B) Non-conductive coating on the screen of a CRT to collect the secondary-emission electrons
(C) Conductive coating on the screen of a CRT to collect the secondary-emission electrons
(D) None of these
59. The colour of the spot on the screen of a CRO is a characteristic of :
(A) Electron gun in a CRT
(B) The type of the waveform being observed
(C) The coating material on the screen
(D) The velocity of the electrons striking the screen
60. Self generating type transducers are \qquad transducers.
(A) Active
(B) Passive
(C) Secondary
(D) Inverse

ENTRANCE TEST-2017

SCHOOL OF APPLIED SCIENCES \& TECHNOLOGY

 ELECTRONICSTotal Questions : 60
Time Allowed $\quad: \quad 70$ Minutes

Question Booklet Series | B |
| :--- | :--- | :--- | :--- | :--- | :--- |

Roll No.: | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Instructions for Candidates:

1. Write your Roll Number in the space provided at the top of this page of Question Booklet and fill up the necessary information in the spaces provided on the OMR Answer Sheet.
2. OMR Answer Sheet has an Original Copy and a Candidate's Copy glued beneath it at the top. While making entries in the Original Copy, candidate should ensure that the two copies are aligned properly so that the entries made in the Original Copy against each item are exactly copied in the Candidate's Copy.
3. All entries in the OMR Answer Sheet, including answers to questions, are to be recorded in the Original Copy only.
4. Choose the correct / most appropriate response for each question among the options $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D and darken the circle of the appropriate response completely. The incomplete darkened circle is not correctly read by the OMR Scanner and no complaint to this effect shall be entertained.
5. Use only blue/black ball point pen to darken the circle of correct/most appropriate response. In no case gel/ink pen or pencil should be used.
6. Do not darken more than one circle of options for any question. A question with more than one darkened response shall be considered wrong.
7. There will be 'Negative Marking' for wrong answers. Each wrong answer will lead to the deduction of 0.25 marks from the total score of the candidate.
8. Only those candidates who would obtain positive score in Entrance Test Examination shall be eligible for admission.
9. Do not make any stray mark on the OMR sheet.
10. Calculators and mobiles shall not be permitted inside the examination hall.
11. Rough work, if any, should be done on the blank sheets provided with the question booklet.
12. OMR Answer sheet must be handled carefully and it should not be folded or mutilated in which case it will not be evaluated.
13. Ensure that your OMR Answer Sheet has been signed by the Invigilator and the candidate himselfherself.
14. At the end of the examination, hand over the OMR Answer Sheet to the invigilator who will first tear off the original OMR sheet in presence of the Candidate and hand over the Candidate's Copy to the candidate.

DAJ-11108-B
[Turn over

1. An 8085 assembly language program is given below. Assume that the carry flag is initially unset. The content of the accumulator after the execution of the program is
MVIA, 07 H
RLC
NOV BAA
LC
RLC
ADD B
RRC
(A) 8 CH
(B) 64 H
(C) 23 H
(D) 15 H
2. For 8085 microprocessor, the following program is executed
MVIA, 05H;
MVI B, 05 H ;
PR: ADD B;
DER B;
NZ PR;
ADI 03H;
BLT;
At the end of program, accumulator contains
(A) 17 H
(B) 20 H
(C) 23 H
(D) 05 H
3. For the 8085 assembly language program given below, the content of the accumulator after the execution of the program is
3000 MVI A, 45 H
3002 MEV B, A
3003 STC
3004 CDC
3005 ReAR
3006 XRAB
(A) 00 H
(B) 45 H
(C) 67 H
(D) E 7 H
4. An 8085 microprocessor executes "STA 1234 H " with starting address location 1FFEH (STA copies the contents of the accumulator to the 16 bit address location). While the instruction is fetched and executed, the sequence of values written at the address pins A15A8 is:
(A) $1 \mathrm{FH}, 1 \mathrm{FH}, 20 \mathrm{H}, 12 \mathrm{H}$
(B) $1 \mathrm{FH}, \mathrm{FEH}, 1 \mathrm{FH}, \mathrm{FFH}$
(C) $1 \mathrm{FH}, 1 \mathrm{FH}, 12 \mathrm{H}, 12 \mathrm{H}$
(D) $1 \mathrm{FH}, 1 \mathrm{FH}, 12 \mathrm{H}, 20 \mathrm{H}$
5. If the carrier of a 100% modulated AM wave is suppressed, the percentage power saving will be
(A) 50
(B) 150
(C) 100
(D) 66.66
6. Consider the signal $\mathrm{s}(\mathrm{s})=\mathrm{m}(\mathrm{t}) \cos 2 \pi \mathrm{fct}+\mathrm{m}^{\wedge}(\mathrm{t}) \sin 2 \pi \mathrm{fct}$ where $\mathrm{m}^{\wedge}(\mathrm{t})$ denotes the Hilbert transform of $\mathrm{m}(\mathrm{t})$ and the bandwidth of $m(t)$ is very small compared to $f c$. The signal $s(t)$ is a
(A) high-pass signal
(B) low-pass signal
(C) band-pass signal
(D) double sideband suppressed carrier signal
7. A message signal $m(t)=\cos 200 \mathrm{pt}+4 \operatorname{cospt}$ modulates the carrier $\mathrm{c}(\mathrm{t})=\cos 2 \mathrm{p}_{\mathrm{c}} \mathrm{t}$ where $\mathrm{f}_{\mathrm{c}}=1 \mathrm{MHz}$ to produce an AM signal. For demodulating the generated AM , signal using an envelope detector, the time constant RC of the detector circuit should satisfy
(A) $0.5 \mathrm{~ms}<\mathrm{RC}<1 \mathrm{~ms}$
(B) $1 \mu \mathrm{~s} \ll \mathrm{RC}<0.5 \mathrm{~ms}$
(C) $\mathrm{RC} \ll 1 \mu \mathrm{~s}$
(D) $\mathrm{RC} \gg 0.5 \mathrm{~ms}$
8. Consider sinusoidal modulation in an AM system. Assuming no over modulation, the modulation index (μ) when the maximum and minimum values of the envelope respectively, are 3 V and 1 V , is \qquad .
(A) 0.5
(B) 1
(C) 0.8
(D) 0.6
9. An FM signal with a modulation index m_{f} is passed through a frequency Tripler. The wave in the output of the Tripler will have a modulation index of
(A) $m_{f} / 3$
(B) $3 \mathrm{~m}_{\mathrm{f}}$
(C) m_{f}
(D) $9 m_{f}$
10. Consider an angle modulated signal $x(t)=6 \cos [2 \pi \times 106 t+2 \sin (8000 \pi t)+4 \cos (8000 p t)] V$. The average power of $x(t)$ is
(A) 10 W
(B) 18 W
(C) 20 W
(D) 28 W
11. An FM radio receiver which is tuned to a 91.6 MHz broadcast station may receive an image frequency of
(A) 102.3 MHz
(B) 113 MHz
(C) 70.2 MHz
(D) 80.9 MHz
12. Commercial frequency deviation of FM is
(A) 70 kHz
(B) 75 kHz
(C) 80 kHz
(D) 65 kHz
13. One of the disadvantages of PCM is
(A) It requires large bandwidth
(B) Very high noise
(C) Cannot be decoded easily
(D) All of the above
14. An analog signal is band-limited to 4 kHz , sampled at the Nyquist rate and the samples are quantized into 4 levels. The quantized levels are assumed to be independent and equally probable. If we transmit two quantized samples per second, the information rate is
\qquad bits / second.
(A) 1
(B) 2
(C) 3
(D) 4
15. A band-limited signal with a maximum frequency of 5 kHz is to be sampled. According to the sampling theorem, the sampling frequency which is not valid is
(A) 5 kHz
(B) 12 kHz
(C) 15 kHz
(D) 20 kHz
16. Which one of the following is used to generate PWM?
(A) Free running multivibrator
(B) Mono-stable multivibrator
(C) JK flip flop
(D) Schmitt trigger
17. Generation of FM signal from PM signal requires
(A) Differentiator
(B) Integrator
(C) Band pass filter
(D) Oscillator
18. Assertion (A): Thermistors are commonly used to measure hot spot temperatures in electric machines.
Reason (R): Thermistor has the advantages of high temperature coefficient, small size and high speed of response.
(A) Both (A) and (R) are true and (R) is correct explanation of (A)
(B) Both (A) and (R) are true but (R) is not correct
explanation of (A)
(C) (A) is true (R) is false
(D) (A) is false (R) is true
19. Consider the following statements regarding phase sensitive detector -
20. The detector reads zero when phases of input signal and reference signal are different
21. The detector acts as a linear rectifier
22. The detector can be used as vector voltmeter Of the above statements which are correct?
Of the above (B) 1 and 2
(A) $1,2,3$
(D) 1 and 3
23. Companding is used
(A) to overcome quantizing noise in PCM
(B) in PCM transmitters, to allow amplitude limited in the receivers
(C) to protect small signals in PCM from quantizing distortion
(D) in PCM receivers, to overcome impulse noise.
24. For parallel RLC circuit, which one of the following statements is NOT correct?
(A) The bandwidth of the circuit decreases if R is increased
(B) The bandwidth of the circuit remains same if L is increased
(C) At resonance, input impedance is a real quantity
(D) At resonance, the magnitude of input impedance attains its minimum value.
25. The current I_{s} in Amps in the voltage source, and voltage V_{s} in Volts across the current source respectively, are

(A) $13,-20$
(B) $8,-10$
(C) $\quad-8,20$
(D) $-13,20$
26. In the circuit shown below, the Norton equivalent current in amperes with respect to the terminals P and Q is

(A) $\quad 6.4-\mathrm{j} 4.8$
(B) $\quad 6.56-\mathrm{J} 7.87$
(C) $\quad 10+\mathrm{j} 0$
(D) $16+j 0$
27. In the circuit shown below, the current I is equal to

(A) 14 A
(B) 2.0 A
(C) 2.8 A
(D) 3.2 A
28. Consider the following statement:

If an electric field is applied to an n type semiconductor bar, the electrons and holes move in opposite directions due to their opposite charges. The net current is -

1. both due to electrons and holes with electrons as majority carriers
2. sum of hole and electron currents
3. difference between electron and hole currents.

Which of above statements are correct?
(A) 1 only
(B) 1 and 2
(C) 2 only
(D) 3 only

Common data for Questions 26 to 28
At room temperature a Si p-n junction diode with n -side is doped with donor concentration of $10^{16} \mathrm{~cm}^{-3}$ and p -side is doped with acceptor concentration of $10^{17} \mathrm{~cm}^{-3}$. The relative permittivity of $\mathrm{Si}, \mathrm{Cr}=11.7$, $n_{i}=10^{10} \mathrm{~cm}^{-3}$.
26: The built in potential is
(A) 360 mV
(B) 420 mV
(C) 640 mV
(D) 780 mV
27. The depletion region width is
(A) $3.37 \mu \mathrm{~m}$
(B) $33.7 \mu \mathrm{~m}$
(C) $5.28 \mu \mathrm{~m}$
(D) $8.91 \mu \mathrm{~m}$
28. The junction capacitance per unit area with zero bias is
(A) $3.02 \mu \mathrm{~F} / \mathrm{m}^{2}$
(B) $26.15 \mu \mathrm{~F} / \mathrm{m}^{2}$
(C) $51.92 \mu \mathrm{~F} / \mathrm{m}^{2}$
(D) $72.75 \mu \mathrm{~F} / \mathrm{m}^{2}$
29. In the circuit shown below, for the MOS transistors, $u_{n} C_{o x}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$ and the threshold voltage $\mathrm{V}_{\mathrm{t}}=1 \mathrm{~V}$. The voltage V_{x} at the source of the upper transistor is :

(A) 1 V
(B) 2 V
(C) 3 V
(D) 3.67 V
30. For a BJT the common base current gain $\alpha=0.98$ and the collector base junction reverse bias saturation current $I_{\text {co }}=0.6 \mu \mathrm{~A}$. This BJT is connected in the common emitter mode and operated in the active region with a base drive current $I_{B}=20 \mu \mathrm{~A}$. The collector current IC for this mode of operation is
(A) 0.98 mA
(B) 0.99 mA
(C) 1.0 mA
(D) $\quad 1.01 \mathrm{~mA}$
31. In the circuit shown below, the silicon npn transistor Q has a very high value of β. The required value of R_{2} in $\mathrm{k} \Omega$ to produce $I_{C}=1 \mathrm{~mA}$ is

(A) 20
(B) 30
(C) 40
(D) 50
32. For the n-channel MOS transistor shown in the figure, the threshold voltage V_{Th} is 0.8 V . Neglect channel length modulation effects. When the drain voltage $V_{D}=1.6 \mathrm{~V}$, the drain current I_{D} was found to be 0.5 mA . If V_{D} is adjusted to be 2 V by changing the values of R and $V_{D D}$, the new value of I_{D} (in $m A$) is

(A) 0.625
(B) 0.75
(C) 1.125
(D) 1.5
33. A 3-input majority gate is defined by the logic function $M(a, b, c)=a b+b c+c a$. Which one of the following gates is represented by the function $M \overline{(M(a, b, c)}, M(a, b, \bar{c}), c)$?
(A) 3-input NAND gate
(B) 3-input XOR gate
(C) 3-input NOR gate
(D) 3-input XNOR gate
34. In a half-subtractor circuit with X and Y as inputs, the Borrow (M) and Difference, $(\mathrm{N}=\mathrm{X}-\mathrm{Y})$ are given by
(A) $\mathrm{M}=\operatorname{Ex}-\mathrm{OR}(\mathrm{X}, \mathrm{Y}), \mathrm{N}=\mathrm{XY}$
(B) $\mathrm{M}=\mathrm{XY}, \mathrm{N}=\mathrm{Ex}-\mathrm{OR}(\mathrm{X}, \mathrm{Y})$
(C) $\mathrm{M}=\mathrm{X}^{\prime} \mathrm{Y}, \mathrm{N}=\mathrm{Ex}-\mathrm{OR}(\mathrm{X}, \mathrm{Y})$
(D) $\mathrm{M}=\mathrm{XY}, \mathrm{N}=(\operatorname{Ex}-\mathrm{OR}(\mathrm{X}, \mathrm{Y}))$
35. The output Y in the circuit below is always ' 1 ' when

(A) two or more of the inputs P, Q, R are ' 0 '
(B) two or more of the inputs P, Q, R are ' 1 '
(C) any odd number of the inputs P, Q, R is ' 0 '
(D) any odd number of the inputs P, Q, R is ' 1 '
36. The logic function implemented by the circuit below is (ground implies logic 0)

(A) $F=P$ AND Q
(B) $\mathrm{F}=\mathrm{P}$ OR Q
(C) $\mathrm{F}=\mathrm{P}$ XNOR Q
(D) $F=P X O R Q$
37. In the differential amplifier shown in the figure, the magnitudes of the common-mode and differentialmode gains are $A_{c m}$ and A_{d}, respectively. If the resistance R_{E} is increased, then

(A) A_{cm} increases
(B) common-mode rejection ratio increases
(C) A_{d} increases
(D) common-mode rejection ratio decreases

DAJ-11108-B
38. The ac schematic of an NMOS common-source stage is shown in the figure below, where part of the biasing circuits has been omitted for simplicity. For the n channel MOSFET M, the Transconductance $\mathrm{g}_{\mathrm{m}}=1 \mathrm{~mA} / \mathrm{V}$, and body effect and channel length modulation effect are to be neglected. The lower cutoff frequency in Hz of the circuit is approximately at

(A) 8
(B) 32
(C) 50
(D) 200
39. An $R C$ coupled amplifier is assumed to have a single pole low frequency transfer function. The maximum lower cut-off frequency allowed for the amplifier to pass 50 Hz square wave with no more than 10% tilt is :
(A) 150 Hz
(B) 100 Hz
(C) 200 Hz
(D) 120 Hz
40. The cascode amplifier is a multistage configuration of
(A) $\quad \mathrm{CC}-\mathrm{CB}$
(B) $\mathrm{CE}-\mathrm{CB}$
(C) $\mathrm{CB}-\mathrm{CC}$
(D) $\mathrm{CE}-\mathrm{CC}$
41. The feedback topology in the amplifier circuit the base bias circuit is not shown for (simplicity) in the figure is

(A) Voltage shunt feedback
(B) Current series feedback
(C) Current shunt feedback
(D) Voltage series feedback
42. In a voltage-voltage feedback as shown below, which one of the following statements is TRUE if the gain k is increased?

(A) The input impedance increases and output impedance decreases
(B) The input impedance increases and output impedance also increases
(C) The input impedance decreases and output impedance also decreases
(D) The input impedance decreases and output impedance increases
43. The circuit shown in the figure has an ideal op-amp. The oscillation frequency and the condition to sustain the oscillations, respectively, are

(A) $1 / \mathrm{CR}$ and $\mathrm{R}_{1}=\mathrm{R}_{2}$
(B) $1 / C R$ and $R_{1}=4 R_{2}$
(C) $1 / 2 \mathrm{CR}$ and $\mathrm{R}_{1}=\mathrm{R}_{2}$
(D) $1 / 2 C R$ and $R_{1}=4 R_{2}$
44. Negative feedback in a closed-loop control system DOES NOT
(A) reduce the overall gain
(B) reduce bandwidth
(C) improve disturbance rejection
(D) reduce sensitivity to parameter variation
45. Assuming the OP-AMP to be ideal, the voltage gain of the amplifier shown below is

(A) $-\mathrm{R}_{2} / \mathrm{R}_{1}$
(B) $-R_{3} / R_{1}$
(C) $-\left(\mathrm{R}_{2} \| \mathrm{R}_{3}\right) / \mathrm{R}_{1}$
(D) $-\left(\mathrm{R}_{2}+\mathrm{R}_{3}\right) / \mathrm{R}_{1}$
50. In majority of instruments damping is provided by
(A) fluid friction
(B) spring
(C) eddy currents
(D) all of the above
51. Which of the following essential features is possessed by an indicating instrument?
(A) Deflecting device
(B) Controlling device
(C) Damping device
(D) All of the above
52. The ratio of maximum displacement deviation to the full scale deviation of the instrument is called:
(A) Static sensitivity
(B) Accuracy
(C) Linearity
(D) Precision
53. Hay's Bridge is suitable for the measurement of
(A) Inductances with $Q>10$
(B) Inductances with $\mathrm{Q}<10$
(C) Capacitors with high dissipation factor
(D) Capacitors with low dissipation factor
54. In CRO astigmatism is:
(A) Source of generating fast electrons
(B) Media for absorbing secondary emission electrons
(C) An additional focus control
(D) Time delay control in the vertical deflection system
55. The outputs of the two flip-flops $\mathrm{Q} 1, \mathrm{Q} 2$ in the figure shown are initialized to 0,0 . The sequence generated at Q1 upon application of clock signal is :

(A) $01110 \ldots$
(B) $01010 \ldots$
(C) 00110...
(D) $01100 \ldots$
56. The output of a 3-stage Johnson (twisted ring) counter is fed to a digital-to analog (D/A) converter as shown in the figure below. Assume all the states of the counter to be unset initially. The waveform which represents the D / A converter output V_{o} is

(A)

(B)

(C)

(D)

57. For the 8085 microprocessor, the interfacing circuit to input 8-bit digital data (DI0 - DI7) from an external device is shown in the figure. The instruction for correct data transfer is

(A) MVIA, F8H
(B) IN F8H
(C) OUT F8H
(D) LDA F8F8H
58. In an 8085 microprocessor, the shift registers which store the result of an addition and the overflow bit are, respectively
(A) B and F
(B) A and F
(C) H and F
(D) A and C
59. Which one of the following is not a vectored interrupt?
(A) TRAP
(B) INTR
(C) RST 7.5
(D) RST 3
60. The register in the 8085A that is used to keep track of the memory address of the next op-code to be run in the program is the:
(A) stack pointer
(B) program counter
(C) instruction pointer
(D) Accumulator

ENTRANCE TEST-2016

FACULTY OF APPLIED SCIENCE \& TECHNOLOGY M.Sc. ELECTRONICS

Total Questions : 60
Time Allowed : 70 Minutes

Question Booklet Series

Instructions for Candidates :

1. Write your Roll Number in the space provided at the top of this page of Question Booklet and fill up the necessary information in the spaces provided on the OMR Answer Sheet.
2. OMR Answer Sheet has an Original Copy and a Candidate's Copy glued beneath it at the top. While making entries in the Original Copy, candidate should ensure that the two copies are aligned properly so that the entries made in the Original Copy against each item are exactly copied in the Candidate's Copy.
3. All entries in the OMR Answer Sheet, including answers to questions, are to be recorded in the Original Copy only.
4. Choose the correct / most appropriate response for each question among the options $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D and darken the circle of the appropriate response completely. The incomplete darkened circle is not correctly read by the OMR Scanner and no complaint to this effect shall be entertained.
5. Use only blue/black ball point pen to darken the circle of correct/most appropriate response. In no case $\mathrm{gel} /$ ink pen or pencil should be used.
6. Do not darken more than one circle of options for any question. A question with more than one darkeneu response shall be considered wrong.
7. There will be 'Negative Marking' for wrong answers. Each wrong answer will lead to the deduction of 0.25 marks from the total score of the candidate.
8. Only those candidates who would obtain positive score in Entrance Test Examination shall be eligible for admission.
9. Do not make any stray mark on the OMR sheet.
10. Calculators and mobiles shall not be permitted inside the examination hall.
11. Rough work, if any, should be done on the blank sheets provided with the question booklet.
12. OMR Answer sheet must be handled carefully and it should not be folded or mutilated in which case it will not be evaluated.
13. Ensure that your OMR Answer Sheet has been signed by the Invigilator and the candidate himself/herself.
14. At the end of the examination, hand over the OMR Answer Sheet to the invigilator who will first tear off the original OMR sheet in presence of the Candidate and hand over the Candidate's Copy to the candidate.
15. Voltage division law states that the voltage across an impedance in a loop containing a single voltage source and many impedances is given by:
(A) The magnitude of impedance only
(B) The value of voltage source only
(C) The magnitude of impedance and the value of voltage source
(D) None of the above
16. Norton's theorem can be used to transform a complex network into an equivalent network that contains :
(A) A voltage source in parallel with an equivalent resistance
(B) A voltage source in series with an equivalent resistance
(C) A current source in parallel with an equivalent resistance
(D) A current source in series with an equivalent resistance
17. A parallel LC resonance circuit has:
(A) Maximum impedance at resonance frequency
(B) Maximum current at resonance frequency
(C) Minimum impedance at resonance frequency
(D) None of the above
18. Which filter has maximum gain at its center/corner frequency?
(A) A lowpass filter
(B) A highpass filter
(C) A bandpass filter
(D) A bandstop filter
19. Which of the following shall be created by adding a trivalent impurity to silicon?
(A) Germanium
(B) A p-type semiconductor
(C) Ann-type semiconductor
(D) A depletion region
20. What will be the average value of full-wave rectified voltage with a peak value of 150 V?
(A) 127.3 V
(B) 141 V
(C) 95.49 V
(D) 63.5 V
21. Which of the following is correct about Zener diode?
(A) Positive temperature voltage coefficient
(B) Negative temperature voltage coefficient
(C) Zero temperature voltage coefficient
(D) All of the above
22. Which of the following is used to determine Line regulation?
(A) Load current
(B) Zener current and load current
(C) Changes in load resistance and output voltage
(D) Changes in output voltage and input voltage
23. Which of the following relates between β with α ?
(A) $\beta=\frac{1}{1-\alpha}$
(B) $\beta=\frac{1}{1+\alpha}$
(C) $\beta=\frac{\alpha}{1-\alpha}$
(D) $\beta=\frac{\alpha}{1+\alpha}$
24. What will be the collector voltage, if the base emitter junction is open?
(A) Vcc
(B) 0 V
(C) Floating
(D) 0.2 V
25. The input resistance of a common base (CB) amplifier is :
(A) Very low
(B) Veryhigh
(C) Same as CE
(D) Same as CC
26. Which of the following is correct about MOSFET ?
(A) MOSFET has two modes of operation: Enhancement and Depletion
(B) MOSFET has two types: n-channel and p-channel
(C) Most of the current digital ICs are implemented using MOSFETs
(D) All of the above
27. According to De-Morgan's law, $\overline{\bar{A}+B}$ can be written as :
(A) $A+\bar{B}$
(B) $\bar{A}+\bar{B}$
(C) $A \cdot \bar{B}$
(D) $\bar{A} \cdot \bar{B}$
28. Which of the following is the correct hexadecimal representation of $(103)_{10}$?
(A) $7 \mathrm{~F}_{16}$
(B) 677_{16}
(C) 81_{16}
(D) 87_{16}
29. Which of the following is same as the logic function $f=x y+x \cdot \bar{y}+\bar{x} \cdot y+\bar{x} \cdot \bar{y}$?
(A) $f=1$
(B) $f=(\bar{x}+y)(x+\bar{y})$
(C) $f=(x . y)+(\bar{x} \cdot \bar{y})$
(D) None of the above
30. Which of the following is the correct octal representation of $(291)_{10}$?
(A) 501_{8}
(B) 443_{8}
(C) 402_{8}
(D) 424_{8}
31. Which among the following logic family has lowest power dissipation?
(A) TTL
(B) CMOS
(C) DTL
(D) ECL
32. Which of the following is the correct POS form of the Boolean function $f(A, B, C)=\sum(1,3,5,6)$?
(A) $f(A, B, C)=\prod(0,2,7)$
(B) $f(A, B, C)=\prod(0,2,6,7)$
(C) $f(A, B, C)=\prod(0,2,4)$
(D) $f(A, B, C)=\prod(0,2,4,7)$
33. Which of the following can be performed by a multiplexer?
(A) Serial to Parallel data conversion
(B) Parallel to Serial data conversion
(C) Parity Checking
(D) None of the above
34. What is the Excess 3 code for 1011 ?
(A) 1011
(B) 1111
(C) 1110
(D) 1100
35. If a square wave clock with a period of 6μ s drives a T type flip-flop with $\mathrm{T}=1$, what would be the period of the output signal ?
(A) $6 \mu \mathrm{~s}$
(B) $24 \mu \mathrm{~s}$
(C) $10 \mu \mathrm{~s}$
(D) $12 \mu \mathrm{~s}$
36. Which of the following will transform an SR type Flip Flop into a D type Flip Flop?
(A) Tying S and R inputs together
(B) Inverting S input
(C) Inverting R input
(D) Inverting R before tying with S
37. How many Flip Flops are required to design a Modulo-14 counter?
(A) 14
(B) 3
(C) 4
(D) 5
38. How many bits of memory does a RAM of $2 \mathrm{~K} \times 8$ have ?
(A) 16000
(B) 2024
(C) 2008
(D) 16384
39. What is the maximum efficiency of a class A power amplifier?
(A) 25%
(B) 50%
(C) 79%
(D) 98%
40. Which amplifier operates in the linear region during one half cycle?
(A) Class A
(B) Class AB
(C) Class B
(D) Class C
41. Which of the following is true about Wien bridge oscillator?
(A) It has three RC circuits
(B) It has three LC circuits
(C) It has a series RC circuit and a parallel RC circuit
(D) None of the above
42. What should be loop phase shift for sustained oscillations?
(A) 0° or 360°
(B) 90°
(C) 180°
(D) 270°
43. What will be the gain of a non-inverting amplifier with $\mathrm{R}=3 \mathrm{~K} \Omega$ and $\mathrm{RF}=9 \mathrm{~K} \Omega$?
(A) 4
(B) 5
(C) 10
(D) 5.5
44. An op-amp based Integrator has :
(A) Diode in the feedback path and capacitance in the series path
(B) Capacitance in the feedback path and resistance in the series path
(C) Resistance in the feedback path and capacitance in the series path
(D) Capacitance in the feedback path and diode in the series path
45. The 555 timer IC is available as :
(A) 8-Pin DIP
(B) 8 - Pin TOP
(C) 14-Pin DIP
(D) 8-Pin Flat Package
46. Which of the following describes the frequency of an Astable Multivibrator?
(A) $f=\frac{0.9}{\left(R_{1}+2 R_{2}\right) C}$
(B) $f=\frac{1.44}{\left(R_{1}+2 R_{2}\right) C}$
(C) $f=\frac{0.9}{R C}$
(D) $f=\frac{1.44}{R C}$
47. In PMMC controlling force is provided by :
(A) Eddy Currents
(B) Mechanical Friction
(C) Air
(D) Spring
48. What should be the value of shunt resistance, if a 1 mA ammeter with a resistance of 100Ω is to be converted to a $1 A$ ammeter ?
(A) 0.001Ω
(B) 0.1001Ω
(C) 100000Ω
(D) 100Ω
49. In a series type of ohmmeter, the zero adjustment should be done by :
(A) Changing the value of series resistance
(B) Changing the value of shunt resistance connected across the meter movement
(C) Changing both the series as well shunt resistance
(D) Changing the battery voltage
50. What is indicated by the high torque to weight ratio in an analog indicating instrument?
(A) High friction loss
(B) Low friction loss
(C) Nothing with regard to friction loss
(D) None of the above
51. Which of the following can be used to measure the frequency?
(A) Maxwell's bridge
(B) Schering bridge
(C) Heaviside Campbell bridge
(D) Wien's bridge
52. An aquadag is used in a CRO to collect:
(A) Primary electrons
(B) Secondary emission electrons
(C) Both primary and secondary emission electrons
(D) None of the above
53. Which of the following can act as an inverse transducer?
(A) Electrical resistance potentiometer
(B) LVDT
(C) Capacitance Transducer
(D) Piezo electric crystals
54. In wire wound strain gauges, the change in resistance on application of strain is mainly due to :
(A) Change in length of wire
(B) Change in diameter of wire
(C) Change in both length and diameter of wire
(D) Change in resistivity
55. Which of the following flags is not included in 8085 Microprocessor?
(A) Overflow Flag
(B) Auxiliary Carry Flag
(C) Sign Flag
(D) Parity Flag
56. Which of the following externally initiated operations can 8085 Microprocessor respond to ?
(A) Reset
(B) Hold
(C) Both (A) and (B)
(D) None of the above
57. Which of the following is not a valid instruction of 8085 Microprocessor ?
(A) ROR
(B) MVIA, 35 h
(C) STA 2000 h
(D) $\mathrm{ADDA}, \mathrm{B}$
58. Which of the following is correct about the 8085 instruction LDA 16-bit ?
(A) The contents of memory location specified by 16-bit operand is loaded in the accumulator
(B) The contents of memory location specified by HL pair is loaded in the accumulator
(C) Both (A) and (B)
(D) None of the above
59. How many RST (Restart) instructions are included in the instruction set of 8085 Microprocessor?
(A) 4
(B) 2
(C) 8
(D) 16
60. Which of the following Interrupts of the 8085 microprocessor is not automatically vectored?
(A) INTR
(B) TRAP
(C) RSTN
(D) None of the above
61. Which of the following is correct about stack operation in 8085 microprocessor?
(A) With every POP operation stack pointer is decremented by 2
(B) With every POP operation stack pointer is incremented by 2
(C) Both Push and POP instructions modify carry flag
(D) Both Push and POP are 2 Byte instructions
62. Which of the following causes wait states to be introduced in the timing of the 8085 microprocessor?
(A) Ready
(B) Hold
(C) Both Ready and Hold
(D) None of the above
63. The frequency components present in single sided spectrum of monotone amplitude modulation with $f_{c}=100 \mathrm{kHz}$ and $f_{m}=1 \mathrm{kHz}$ are:
(A) $100 \mathrm{kHz}, 1 \mathrm{kHz}$
(B) $100 \mathrm{kHz}, 1 \mathrm{kHz}, 99 \mathrm{kHz}$
(C) $100 \mathrm{kHz}, 1 \mathrm{kHz}, 101 \mathrm{kHz}$
(D) $100 \mathrm{kHz}, 101 \mathrm{kHz}, 99 \mathrm{kHz}$
64. In amplitude modulation the pattern produced by the peaks of the carrier signal is called as :
(A) Index
(B) Envelope
(C) Audio signal
(D) Upper side frequency
65. In an amplitude modulated system, the total power radiated is 105 W . The power of the carrier is 85 W . What is modulation index ?
(A) 0.685
(B) 0.587
(C) 0.586
(D) 0.865
66. Which of the following is/are the disadvantages of Amplitude Modulation?
(A) Complexity
(B) Bandwidth
(C) Power
(D) Both (B) and (C)
67. What is the intermediate frequency of FM receiver?
(A) Between 88 MHz and 108 MHz
(B) Between 540 kHz and 1640 kHz
(C) 455 kHz
(D) $\quad 10.70 \mathrm{MHz}$
68. What is the frequency range for FM radio stations?
(A) $100 \mathrm{MHz}-110 \mathrm{MHz}$
(B) $95 \mathrm{MHz}-105 \mathrm{MHz}$
(C) $90 \mathrm{MHz}-110 \mathrm{MHz}$
(D) $88 \mathrm{MHz}-108 \mathrm{MHz}$
69. For which of the following modulation techniques, Radio Detector is used as a demodulator?
(A) FM Modulation
(B) AMModulation
(C) DSBSC modulation
(D) SSBSC modulation
70. What function does the detector or discriminator in an AM or an FM receiver perform ?
(A) Detects the difference frequency from the mixer
(B) Changes the RF to IF
(C) Recovers the audio signal
(D) Maintains a constant IF amplitude
71. Which of the following must be true in order to faithfully recover the signal from its sampled version?
(A) Sampling frequency should be at least twice the highest frequency component present in the signal
(B) Sampling frequency should be at least twice the smallest frequency component present in the signal
(C) Sampling frequency should be at most twice the highest frequency component present in the signal
(D) None of the above
72. In which of the following, Multiphase switching signals are required ?
(A) PWM
(B) PPM
(C) PAM
(D) None of the above
73. In which of the following, l's and 0 's are represented by two different amplitudes ?
(A) ASK
(B) PSK
(C) FSK
(D) DPSK
74. What is the last block in PCM ?
(A) Sampler
(B) Anti-Aliasing Filter
(C) Encoder
(D) Quantizer
75. Time-delay and Phase can be measured by using a :
(A) VTVM
(B) CRO
(C) TVM
(D) PMMC
76. The external resistance inserted in the PMMC circuit for increasing the range is called :
(A) Shunt resistance
(B) Series resistance
(C) Multiplier
(D) Both (A) and (C)
77. The maximum current that can be safely carried in PMMC instruments is :
(A) 10 mA
(B) 15 mA
(C) 20 mA
(D) 25 mA
78. For measurements of capacitance and Dielectric loss, which one of the Bridges is used ?
(A) Schering Bridges
(B) Maxwells Bridge
(C) Maxwell wein Bridge
(D) None of the above
79. In Thermocouple instruments, which one of the following principle is used ?
(A) Seeback effect
(B) Peltier effect
(C) Johnson's effect
(D) Both (A) and (B)
80. The 8085 has :
(A) 16 address lines
(B) 32 address lines
(C) 4 address lines
(D) 8 address lines
81. Total memory which can be accessed by Intel-8085 is :
(A) 2 K bytes
(B) 4 K bytes
(C) 16 K bytes
(D) 64 K bytes
82. In a microprocessor, the address of the next instruction to be executed is stored in :
(A) Stack pointer
(B) Address latch
(C) Program Counter
(D) General Purpose Register
83. In a 8085 Microprocessor, the status of output pins $\mathrm{S}_{0}, \mathrm{~S}_{1}$ for READ operation is :
(A) 00
(B) 01
(C) 10
(D) 11

CLM-53712-B

10. The CALL location (in Hexadecimal) for TRAP is :
(A) 0024
(B) 003 C
(C) 0034
(D) 002 C
11. Intel 8255 is a :
(A) Programmable Peripheral Interface (PPI)
(B) Programmable DMA Controller
(C) Programmable Interrupt Controller (PIC)
(D) None of the above
12. Data are stored in the stack using :
(A) FIFO
(B) LIFO
(C) Both (A) and (B)
(D) None of the above
13. Subroutines are called by :
(A) CALL instruction
(B) JMP instruction
(C) Shift
(D) Push
14. A carrier is simultaneously modulated by two Sine waves, using modulation index of 0.4 and 0.3 , the resultant modulation index will be :
(A) 1.0
(B) 0.7
(C) 0.5
(D) 0.35
15. In a 100% Amplitude Modulated signal, if the total transmitted power is P , then carrier power will be :
(A) $2 / 3 \mathrm{P}$
(B) $1 / 2 \mathrm{P}$
(C) $1 / 3 \mathrm{P}$
(D) $1 / 4 \mathrm{P}$
16. Amplitude Modulation is :
(A) Non-Linear
(B) Linear
(C) Both Linear and Non-linear
(D) Neither linear nor Non-linear
17. The most common detector used in an A.M. radio broadcast receiver is :
(A) Envelope detector
(B) Coherent detector
(C) Discriminator
(D) Ratio detector
18. In a narrow band FM system, the highest modulating frequency is f_{m}. The bandwidth of the system will be :
(A) $6 \mathrm{f}_{\mathrm{m}}$
(B) f_{m}
(C) $2 f_{m}$
(D) $10 f_{m}$
19. The modulating frequency in FM is increased from 10 kHz to 20 kHz . The bandwidth will get :
(A) doubled
(B) halved
(C) increased by 20 kHz
(D) increased tremendously
20. Following is not an advantage of FM over AM :
(A) Noise immunity
(B) Fidelity
(C) Capture effect
(D) Sputtering effect
21. An angle modulated signal is given by
$S(t)=\cos 2 \pi\left(2 \times 10^{6} t+30 \sin 150 t+40 \cos 150 t\right)$.
The maximum frequency and phase deviations of $\mathrm{S}(\mathrm{t})$ are :
(A) $10.5 \mathrm{kHz}, 14 \pi \mathrm{rad}$
(B) $6.0 \mathrm{kHz}, 80 \pi \mathrm{rad}$
(C) $10.5 \mathrm{kHz}, 100 \pi \mathrm{rad}$
(D) $7.5 \mathrm{kHz}, 100 \pi \mathrm{rad}$
22. The PWM needs :
(A) more power than PPM
(B) more samples per second than PPM
(C) more bandwidth than PPM
(D) None of the above
23. In PCM, the quantization noise depends on :
(A) Sampling rate
(B) Number of Quantization levels
(C) Signal power
(D) None of the above
24. Which of the following modulation is analog in nature ?
(A) PCM
(B) DPCM
(C) DM
(D) None of the above
25. The main objective of a 'Cell' in a Cellular Mobile System is :
(A) Frequency reuse
(B) Higher bandwidth
(C) Simple Modulation Technique
(D) Hand off
26. If R_{3} gets open circuited in Fig. 1; the reading across the ideal Voltmeter 'V' will be :

Fig. 1
(A) Fall to zero
(B) Increase slightly
(C) Decrease slightly
(D) Equal to 100 volt
27. Current through a discharging capacitor exhibits :
(A) An exponential decaying function
(B) A linear function
(C) A step function
(D) None of these
28. In a series RLC circuit, at resonance :
(A) Current is minimum
(B) Current is maximum
(C) Impedance is maximum
(D) None of these
29. The Thevenian equivalent resistance between terminals A and B in Fig. 2 is :

Fig. 2
(A) 8 ohm
(B) 24 ohm
(C) 10 ohm
(D) 12 ohm
30. Recombination is the process in which :
(A) An electron falls into a hole
(B) A positive and a negative ion bond together
(C) A valance electron becomes a conduction electron
(D) All the above
31. The Depletion region consists of :
(A) Minority carriers
(B) Positive and negative ions
(C) Majority carriers
(D) None of the above
32. The value of DC voltage at the output of Half-wave rectifier with input $\mathrm{V} \sin \omega \mathrm{t}$ is :
(A) V
(B) $\frac{\mathrm{V}}{\pi}$
(C) $\frac{2 \mathrm{~V}}{\pi}$
(D) 0.707 V
33. An LED :
(A) Emits light when reverse biased
(B) Emits light when forward biased
(C) Senses light when reverse biased
(D) Acts as a variable resistance
34. If I_{C} is 70 times greater than I_{B}, then β of transistor is:
(A) 0.7
(B) 0.35
(C) 70
(D) 700
35. When operating in cutoff and saturation regions, transistor acts like :
(A) A linear amplifier
(B) A switch
(C) Variable capacitor
(D) Variable resistance
36. The gate source voltage for JFET as shown in Fig. 3 (assuming $\mathrm{V}_{\mathrm{d}}=7.0 \mathrm{~V}$) is :

Fig. 3
(A) 1.52 V
(B) -5 V
(C) -1.8 V
(D) 3.34 V
37. For a D-MOSFET, $\mathrm{I}_{\mathrm{Dss}}=10.0 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{GS}(\mathrm{off})}=-8.0 \mathrm{~V}$, the drain current for $\mathrm{V}_{\mathrm{GS}}=-3 \mathrm{~V}$ is :
(A) 18.9 mA
(B) 3.91 mA
(C) 39.1 mA
(D) .391 mA
38. One's complement of a binary number can be found by :
(A) Changing all 1 's to 0 's
(B) Changing all 0 's to 1 's
(C) Changing all 0's to 1 's and all 1 's to 0 's
(D) Adding 1 to the obtained number after performing the action described at (C)
39. The expression for Sum function in case of a Half adder with inputs A and B :
(A) $\mathrm{Y}=\overline{\mathrm{A} \oplus \mathrm{B}}$
(B) $\mathrm{Y}=\mathrm{A}+\mathrm{B}$
(C) $\mathrm{Y}=\mathrm{A} \oplus \mathrm{B}$
(D) $\mathrm{Y}=\mathrm{A} \cdot \mathrm{B}$
40. Which of the following Flip-Flop does not have race-around problem ?
(A) T Flip-Flop
(B) D Flip-Flop
(C) JK Flip-Flop
(D) JK-Master Slave Flip-Flop
41. A ring counter is:
(A) A combinational circuit
(B) Circulating Shift Register
(C) A Shift Register with feedback
(D) Both (B) and (C)
42. The gray code of a binary number 1011 is :
(A) 1011
(B) 1110
(C) 1111
(D) 0001
43. The parity of binary number 100110011 is :
(A) Even
(B) Odd
(C) 4
(D) 5
44. The number of Flip-Flops required for Modulo-10 counter is:
(A) 10
(B) 3.35
(C) 5
(D) 4
45. The counter requiring maximum number of Flip-Flops for a given MOD number is :
(A) Ripple counter
(B) BCD counter
(C) Ring counter
(D) Programmable counter
46. The bandwidth of an amplifier is determined by :
(A) Mid range gain
(B) The critical frequencies
(C) The roll-off rate
(D) The input capacitance
47. At upper critical frequency, the output voltage of an amplifier is 10.0 V . The peak voltage in midrange of amplifier is :
(A) 7.07 V
(B) 6.9 V
(C) 14.14 V
(D) 10 V

CLM-53712-B
48. Cross over distortion occurs in \qquad amplifiers.
(A) Push pull
(B) Class A
(C) Class AB
(D) None
49. The maximum overall efficiency of a transformer-coupled class-A amplifier is :
(A) 78.5%
(B) 25%
(C) 85%
(D) 50%
50. Negative feedback in amplifiers :
(A) Lowers its lower cutoff frequency
(B) Raises its upper 3-dB frequency
(C) Increases bandwidth
(D) All the above
51. Shunt derived and series-fed feedback in an amplifier :
(A) Increases its output impedance
(B) Decreases its output impedance
(C) Increases its input impedance
(D) Both (B) and (C)
52. A Collpits oscillator uses :
(A) Tapped coil
(B) Inductive feedback
(C) Tapped capacitance
(D) Tapped resistance
53. The frequency of oscillation of Phase Shift oscillator with all the three resistance branches of phase shift network equal to R and capacitance branches equal to C is given by :
(A) $0.065 / \mathrm{RC} \mathrm{Hz}$
(B) $1 / \pi \sqrt{\mathrm{RC}} \mathrm{Hz}$
(C) $1 / 2 \pi \sqrt{\mathrm{RC}} \mathrm{Hz}$
(D) None of these
54. The feedback element in an integrator is:
(A) Inductor
(B) Resistor
(C) Capacitor
(D) Zener diode
55. A triangular wave is applied to input of a differentiator, the output is :
(A) DC level
(B) Inverted triangular wave
(C) Square wave
(D) The first harmonic of triangular wave
56. In a scaling adder, the input resistors are :
(A) All of same value
(B) All of different value
(C) Each proportional to weight of its input
(D) Related by a factor of 2
57. Slew rate of an operational amplifier is defined as :
(A) Maximum rate of change of output voltage
(B) Minimum rate of change of output voltage
(C) Zero rate of change of output voltage
(D) Average rate of change of output voltage
58. The function of input attenuators in instruments like VTM, CRO etc. is to :
(A) Increase input impedance
(B) Attenuate the frequency range
(C) Attenuate the input signal amplitude without altering the frequency contents
(D) Attenuate the input impedance
59. In a CRT the highest positive potential is given to :
(A) Focusing Electrodes
(B) Cathode
(C) Vertical Deflection plates
(D) Positive deflection acceleration anode
60. The resolution of a digital Ammeter with 3-digit display is :
(A) $1 / 10000$
(B) $1 / 1000$
(C) $1 / 4$
(D) $1 / 3$

M.Sc. Electronics/A

1. Ann-type semiconductor material :
(A) Is intrinsic
(B) Has trivalent impurity atoms added
(C) Has pentavalent impurity atoms added
(D) Requires no doping
2. What types of impurity atoms are added to increase the number of conduction-band electrons in intrinsic silicon?
(A) Bivalent
(B) Octavalent
(C) Pentavalent
(D) Trivalent
3. Doping of a semiconductor material means :
(A) That a glue-type substance is added to hold the material together
(B) That impurities are added to increase the resistance of the material
(C) That impurities are added to decrease the resistance of the materia
(D) That all impurities are removed to get pure silicon
4. What type of diode circuit is used to clip off portions of signal voltages above or
below certain levels?
(A) Limiter
(B) Clamper
(C) IC voltage regulator
(D) None of the above
5. For a silicon transistor, when a base-emitter junction is forward-biased, it has a
nominal voltage drop of
(A) 0.7 V
(B) 0.3 V
(C) 0.2 V
(D) VCC
6. Which of the following is true for an $\mathrm{n}-\mathrm{p}-\mathrm{n}$ or $\mathrm{p}-\mathrm{n}$-p transistor?
(A) $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}$
(B) $\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{E}}$
(C) $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{B}}+\mathrm{I}$
(D) None of the above
7. What type(s) of gate-to-source voltage(s) can a depletion MOSFET (D-MOSFET) operate with?
(A) Zero
(B) Positive
(C) Negative
(D) Any of the above
8. If V_{D} is less than expected (normal) for a self-biased JFET circuit, then it could be caused by a(n) :
(A) O pen R_{G}
(B) Open gate lead
(C) FET internally open at gate
(D) All of the above
9. Identify what type of filter this circuit is, and calculate its cutoff frequency :

(A) Low-pass filter, $\mathrm{f}_{\text {cutof }}=1.061 \mathrm{kHz}$
(B) Band-pass filter, $\mathrm{f}_{\text {worf }}=2.061 \mathrm{kHz}$
(C) High-pass filter, $\mathrm{f}_{\text {cuoff }}=1.061 \mathrm{kHz}$
(D) All-pass filter, $\mathrm{f}_{\text {cuoff }}=2.061 \mathrm{kHz}$
10. What kind of filtering action does this resonant circuit provide ?

(A) Bund-pass filter
(B) All-pass filter
(C) High-pass filter
(D) Low-pass filter

CMN-45545-A
(3)
[Turn over
11. Find the value of R_{L} for maximum powerto R_{L} :

(A) 5.625 ohms
(B) 5.9 ohms
(C) 6.125 ohms
(D) 4.65 ohms
12. Norton's Theorem is used in a situation where the current through or the voltage across a load of \qquad is the variable of interest.
(A) Varying values
(B) Fixed values
(C) Similar values
(D) Two values
13. Which type of power amplifier is biased for operation at less than 180° of the cycle?
(A) Class A
(B) Class B or AB
(C) Class C
(D) Class D
14. Which of the push-pull amplifiers is presently the most popular form of the class B power amplifier?
(A) Quasi-complementary
(B) Transformer-coupled
(C) Complementary-symmetry
(D) None of the above

CMN-45545-A
15. Which of the following improvements is (are) a result of the negative feedback in a circuit?
(A) Lower output impedance
(B) Reduced noise
(C) More linear operation
(D) All of the above
16. This circuit is a__oscillator.

(A) Phase-shift
(B) Wien bridge
(C) Colpitts
(D) Hartley
17. Determine the output voltage when $\mathrm{V}_{1}=-\mathrm{V}_{2}=1 \mathrm{~V}$:

(A) 0 V
(B) -2 V
(C) 1 V
(D) 2 V
18. Calculate the output voltage if $\mathrm{V}_{1}=\mathrm{V}_{2}=700 \mathrm{mV}$:

(A) 0 V
(B) -12 V
(C) 12 V
(D) -8 V
19. What is the function of the comparators in the 555 timer circuit ?
(A) To compare the output voltages to the internal voltage divider
(B) To compare the input voltages to the internal voltage divider
(C) To compare the output voltages to the external voltage divider
(D) To compare the input voltages to the external voltage divider
20. What is the output pulse width of the waveform at the output of the circuit in figure below?
(A) 1.65 ms
(B) 1.82 ms
(C) 4.98 ms
(D) 5.46 ms

CMN-45545-A
(6)
21. Determine the output voltage of the following regulator (assuming that the input voltage is sufficiently high to allow normal operation):

(A) 11 V
(B) 12 V
(C) 15 V
(D) 16 V
22. Which of the following statements is incorrect?
(A) The output voltage of a switching regulator is controlled by altering the switching frequency
(B) A great advantage of switching regulators is that their power consumption is very low
C) Switching regulators use switching speeds of 20 kHz or more
(D) Both bipolar transistors and FETs have very good switching characteristics
23. One of the most widely used forms of light sensor is the photodiode. Which of the following statements is correct?
(A) A photodiode is an example of a photoconductive sensor
(B) A photodiode can be used as either a photoconductive or a photovoltaic sensor
(C) A photodiode is an example of a photovoltaic sensor
(D) A photodiode is an example of a photoconductive and photovoltaic sensor
24. An LED is forward-biased. The diode should be on, but no light is showing. A possible trouble might be:
(A) The diode is open
(B) The series resistor is too small
(C) None. The diode should be off if forward-biased
(D) The power supply voltage is too high

CMN-45545-A
(7)
[Turn over
25. Consider the statement, "Either $-2 \leq x \leq-1$ or $1 \leq x \leq 2$ ". The negation of this statement is :
(A) $\mathrm{x}<-2$ or $2<\mathrm{x}$ or $-1<\mathrm{x}<1$
(B) $\mathrm{x}<-2$ or $2<\mathrm{x}$
(C) $-1<x<1$
(D) $\mathrm{x} \leq-2$ or $2 \leq \mathrm{x}$ or $-1<\mathrm{x}<1$
26. A sufficient condition that a triangle T be a right triangle is that $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$. An equivalent statement is :
(A) If T îs a aright triangle then $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$
(B) If $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$ then T is a right triangle
(C) If a ${ }^{2}+\mathrm{b}^{2} 6 \neq \mathrm{c}^{2}$ then T is not a right triangle
(D) T is a right triangle only if $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}$
27. Using binary arithmetic, a number y is computed by taking the n-bit two's complemen of $x-c$. If n is eleven, $x=101000010012$ and $c=101012$ then $y=$:
(A) 011000011112
(B) 011000011002
(C) 011000111002
(D) 010001111002
28. Consider the statement, "If n is divisible by 30 then n is divisible by 2 and by 3 and by $5^{\prime \prime}$. Which of the following statements is equivalent to this statement?
(A) If n is not divisible by 30 then n is divisible by 2 or divisible by 3 or divisible by 5
(B) If n is not divisible by 30 then n is not divisible by 2 or not divisible by 3 or not divisible by 5
(C) If n is divisible by 2 and divisible by 3 and divisible by 5 then n is divistble by 30
(D) If n is not divisible by 2 or not divisible by 3 or not divisible by 5 then n is not divisible by 30
29. As an engineer you are confronted with a $\mathbb{T L}$ circuit board containing dozens of IC chips. You have taken several readings at numerous IC chips, but the readings are inconclusive because of their erratic nature. Of the possible faults listed, select the one that most probably is causing the problem :
(A) A defective IC chip that is drawing excessive current from the power supply
(B) A solar bridge between the inputs on the first IC chip on the board
(C) An open connection between the inputs on the first IC chip on the board
(D) Adefective outputIC chip that has an internal open to V_{oc}.
30. Which of the following is an important feature of the sum-of-products form of expressions?
(A) All logic circuits are reduced to nothing more than simple AND and OR gates
(B) The delay times are greatly reduced over other forms
(C) No signal must pass through more than two gates, not including inverters
(D) The maximum number of gates that any signal must pass through is reduced by a factor of two
31. The following waveform pattern is for a(n):

(A) 2-input AND gate
(C) Exclusive-OR gate
(B) 2-input OR gate
(D) None of the above

CMN-45545-A
32. Which of the following is the primary advantage of using the BCD code instead of straight binary coding?
(A) Fewer bits are required to represent a decimal number with the BCD code
(B) The relative ease of converting to and from decimal
(C) BCD codes are easily converted to hexadecimal codes
(D) BCD codes are easily converted to straight binary codes
33. For the given circuit, what memory location is being addressed ?
(A) 10111 -
(B) 249
(C) 5
(D) 157

34. How many flip-flops are in the 7475 IC ?
(A) 1
(B) 2
(C) 4
(D) 8
35. An RC circuit used in a nonretriggerable 74121 one-shot has an $\mathrm{R}_{\mathrm{EXT}}$ of 49 Kilo Ohm and a $\mathrm{C}_{\mathrm{EXT}}$ of 0.2 micro farad. The pulse width $\left(\mathrm{t}_{\mathrm{w}}\right)$ is approximately
(A) 6.9 micro second
(B) 6.9 millisecond
(C) 69 millisecond
(D) 690 millisecond

CMN-45545-A
36. To completely load and then unload an 8 -bit register requires how many clock pulses?
(A) 2
(B) 4
(C) 8
(D) 16
37. What type of circuit is used at the interface point of an input port?
(A) Decoder
(B) Latch
C) Tristate buffer
(D) None of the above
38. The suitable programmable counter for 8086 microprocessor is :
(A) 8253 chip
(B) 8254 chip
(C) 8359 chip
(D) 8251 chip
39. What is the address space of 8086 CPU ?
(A) 1 MB
(B) 256 KB
(C) 1 KB
(D) 64 KB
40. Memory chips of four different sizes as below are available :

1. $32 \mathrm{k} \times 4$ 相
2. $8 \mathrm{k} \times 8$ 4. $16 \mathrm{k} \times 4$

All memory chips as mentioned in the above list are Read/Write memory. What minimal combination of chips or chip alone can map full address space of 8085 microprocessor?
(A) 1 and 2
(B) 1 onl
(C) 2 only
(D) 4 only
41. In an instruction of 8085 microprocessor, how many byte are present
(A) One or two
(B) One, two or thre
(C) One only
(D) Two or three
42. In 8085 microprocessor, how many interrupts are maskable ?
(A) Two
(B) Three
C) Four
(D) Five
43. How many times will the following loop be executed:

	LXIB	0010 H		
LOOP:	DCX	B		
	MOV	A, B		
		ORA	C	
		JNJ	LOOP	
(A) 10			(B) 100	
(C) 16			(D) 15	

44. If the accumulator of an intel 8085 A microprocessor contains 37 H and the previous operation has set the carry flag, the instruction ACl 56 H will result in:
(A) 8 EH
(B) 94 H
(C) 7 EH
(D) 84 H
45. Is there any difference between following declarations?
externint fun();
int fun();
(A) Bothareidentical
(B) No difference, except extern int fun(); is probably in another file
(C) int fun $)$; is overrided with extern int fun();
(D) None of these
46. If the binary equivalent of 5.375 in normalized form is 01000000101011000000

000000000000 , what will be the output of the program (on intel machine)?
\#include<stdio.h>
\#include<math. h >
int main0
\{
float $a=5.375$;
char ${ }^{*}$ p;
inti;
$\mathrm{p}=\left(\right.$ char $\left.^{*}\right) \&$;
for $(i=0 ; i<=3 ; i++)$
print(" $" \% 02 \times \ln$ ", (unsigned char)p[i])
return 0
\}
$\begin{array}{ll}\text { (A) } 40 \mathrm{AC} 0000 & \text { (B) } 04 \mathrm{CA} 0000 \\ \text { (C) } 0000 \mathrm{AC} 40 & \text { (D) } 0000 \mathrm{CA} 0\end{array}$
(C) 0000 AC 40
7. What would be the equivalent pointer expression for referring the array element $\mathrm{a}[\mathrm{i}][\mathrm{j}][\mathrm{k}][1]$?
(A) $\quad(((a+\mathrm{i})+\mathrm{j})+\mathrm{k})+\mathrm{l})$
(C) $(((a+\mathrm{i})+\mathrm{j})+\mathrm{k}+\mathrm{l})$
(B) ${ }^{*}\left({ }^{*}\left({ }^{*}(*(\mathrm{a}+\mathrm{i})+\mathrm{j})+\mathrm{k}\right)+\mathrm{l}\right)$
(D) $((a+i)+j+k+1)$
48. How many times "IndiaBIX" is get printed ?
\#include<stdio.h>
int main()
\{
int $x ;$
for $(x=$
for $(x=-1 ; x<=10 ; x++)$
\{ $i f(x<5)$
continue
$\stackrel{\text { else }}{\text { breà }}$
printf("IndiaBIX");
\}
return 0 ;
(A) Infinite times
(B) 11 times
(C) 0 times
(D) 10 times
\}
49. Which of the following statements is correct about the following program?

\#include<stdio.h>

intmain(
\{

structemp

\{
char name[25];
int age;
floatsal;
\};
struct emp e[2];
int $\mathrm{i}=0$;
for $(\mathrm{i}=0 ; \mathrm{i}<2 ; \mathrm{i}++)$
scanf("\%s \%d \%f", e[i].name, \&e[i].age, \&e[i].sal);
$\operatorname{or}(\mathrm{i}=0 ; \mathrm{i}<2 ; \mathrm{i}++)$
scanf("\%s \%d\%f", e[i].name, e[i].age, e[i]sal);
, return 0 ;
(A) Error: scanf0 function cannot be used for structures elements
(B) The code runs successfully
(C) Error: Floating point formats not linked abnormal program termination
(D) Error: structure variable must be initialized
50. What will be the output of the program?
\#include<stdio.h>
int main0
$\{$
typedef int arr[5];
arr iarr $=\{1,2,3,4,5\}$;
inti;
for $(i=0 ; i<4 ; i++)$
printf("\%d,", iarr[i])
\}
(A) $1,2,3,4$
(B) 1,2,3, 4, 5
(C) No output
(D) Error: Cannot use typedef with an array
51. What is the purpose of "rb" in fopen() function used below in the code? FILE*fp;
$f_{\mathrm{p}}=$ fopen("source.txt", "rb");
(A) Open "source.txt" in binary mode for reading
(B) Open "source.txt" in binary mode for reading and writing
(C) Create a new file "source.txt" for reading and writing
(D) None of the above
52. If the file 'source.txt' contains a line "Be my friend" which of the following will be the output of below program?
\#include-stdio.h>
intmain()
\{
FILE *fs, *ft
charc[10];
$\mathrm{fs}=$ fopen("source.txt", "r")
$\mathrm{c}[0]=\operatorname{getc}(\mathrm{fs})$;
fseek(fs, 0, SEEK_END);
fseek(fs, -3 L, SEEK_CUR);
fgets(c, 5, fs);
puts(c);
return 0 ;
\}
(A) Friend
(B) frien
(C) end
(D) Error in fseek();

CMN-45545-A
53. What frequency range is used for FM radio transmission ?
(A) Very Low Frequency: 3 kHz to 30 kHz
(B) Low Frequency: 30 kHz to 300 kHz
(C) High Frequency: 3 MHz to 30 MHz
(D) Very High Frequency: 30 MHz to 300 MHz
54. An example of an analog communication method is:
(A) Laser beam
(B) Microwave
(C) Voice grade telephone line
(D) All of the above
55. If the baud rate is 400 for a QPSK signal, the bit rate is \qquad
(A) 100
(B) 400
(C) 800
(D) 1600
56. The constellation diagram of 16-QAM has dots
(A) 4
(B) 16
(C) 8
(D) None of the above
57. For a___channel, the Nyquist bit rate formula defines the theoretical maximum bit rate.
(A) Noisy
(B) Noiseless
(C) Bandpass
(D) Low-pass
58. Fora _channel, we need to use the Shannon capacity to find the maximum bit rate.
(A) Noisy
(B) Noiseless
(C) Bandpass
(D) Low-pass
59. A signal is measured at two different points. The power is P 1 at the first point and P 2 at the second point. The dB is 0 . This means \qquad
\qquad
(A) P 2 is zero.
(B) P2 equals P1
(C) P2 is much larger than P1
(D) P2 is much smaller than P1
60. If the bit rate for an ASK signal is 1200 bps , the baud rate is \qquad .
(A) 300
(B) 400
(C) 600
(D) 1200

M.Sc. Electronics \& IT/A

1. The energy band in which free electrons exist is the :
(A) First band
(B) Second band
(C) Conduction band
(D) Valence band
2. Electron hole pairs are produced by :
(A) Recombination
(B) Thermal energy
(C) Ionization
(D) Doping
3. The average value of half-wave rectified voltage with a peak value of 200 V is :
(A) 63.7 V
(B) 127.3 V
(C) 141 V
(D) 0 V
4. Line regulation is determined by :
(A) Load current
(B) Zener current and load current
(C) Changes in load resistance and output voltage
(D) Changes in output voltage and input voltage
5. Collector-feedback bias is :
(A) Based on the principle of positive feedback
(B) Based on β multiplication
(C) Based on the principle of negative feedback
(D) None of the above
6. In a certain emitter follower circuit, the current gain is 50 . The power gain is approximately:
(A) $50 \mathrm{~A}_{\mathrm{v}}$
(B) 50
(C) 1
(D) (A) and (B)
7. The constant current area of a FET lies between :
(A) Cutoff and saturation
(B) Cutoff and pinch-off
(C) 0 and $I_{\text {DSs }}$
(D) Pinch-off and breakdown
8. A MOSFET differs from JFET mainly because :
(A) Of the power rating
(B) The MOSFET has two gates
(C) The JFET has a pn junction
(D) MOSFETs do not have a physical channel
9. Thevinin's theorem can be used to transform a complex network into an equivalent network contain :
(A) A voltage source in parallel with an equivalent resistance
(B) A voltage source in series with an equivalent resistance
(C) A current source in parallel with an equivalent resistance
(D) A current source in series with an equivalent resistance
10. A series LC resonance circuit has:
(A) Maximum impedance at resonance frequency
(B) Maximum current at resonance frequency
(C) Minimum impedance at resonance frequency
(D) (B) and (C)
11. When the gain of the filter is minimum at its centre frequency, it is:
(A) A lowpass filter
(B) A highpass filter
(C) A bandpass filter
(D) A bandstop filter
12. The quality factor of a bandpass filter depends on :
(A) The critical frequencies
(B) Only on bandwidth
(C) The center frequency and the bandwidth
(D) Only on the centre frequency
13. An amplifier that operates in the linear region at all times is :
(A) Class A
(B) Class AB
(C) Class B
(D) Class C
14. Crossover distortion is a problem for :
(A) Class A amplifiers
(B) Class AB amplifiers
(C) Class B amplifiers
(D) All of these amplifiers
15. A phase shift oscillator has:
(A) Three RC circuits
(B) Three LC circuits
(C) AT-type circuit
(D) A π-type circuit
16. The main feature of a crystal oscillator is :
(A) Economy
(B) Reliability
(C) Stability
(D) High frequency
17. If $\mathrm{A}_{\mathrm{vd}}=3500$ and $\mathrm{A}_{\mathrm{Cm}}=0.35$, the CMRR is :
(A) 1225
(B) 10,000
(C) 80 dB
(D) (B) and (C)
18. A voltage follower :
(A) Has a gain of 1
(B) Is non-inverting
(C) Has no feedback resistor
(D) All of the above
19. The output of differentiator is proportional to:
(A) The RC time constant
(B) The rate at which the input is changing
(C) The amplitude of the input
(D) (A) and (B)
20. The frequency of the output pulses in mono-stable multivibrator circuit is :
(A) A function of the time constant RC of the biasing resistor and the coupling capacitor
(B) Double the frequency of the triggering pulses
(C) Same as the frequency of the triggering pulses
(D) Half the frequency of the triggering pulses
21. An SCR can be tumed off by :
(A) Forced commutatio:
(B) A negative pulse on the gate
(C) Anode current interuption
(D) (A) and (C)
22. The Diac is :
(A) A thyristor
(B) A bilateral two-terminal device
(C) Like two parallel-4 layer diodes in reverse direction
(D) All of the above
23. Which of the following is not a characteristic of the UJT ?
(A) Intrinsic standoff ratio
(B) Negative resistance
(C) Bilateral conduction
(D) Peak-point voltage
24. The internal resistance of a photodiode :
(A) Increases with light intensity when reverse-biased
(B) Decreases with light intensity when reverse-biased
(C) Increases with light intensity when forward-biased
(D) Decreases with light intensity when forward-biased
25. According to De-Morgan's law, $\overline{A+B C}$ can be written as :
(A) $A+B C$
(B) $A . B C$
(C) $\bar{A} \cdot B C$
(D) None of the above
26. BCD representation of 85 is:
(A) 10000101
(B) 11000101
(C) 10000001
(D) 10010101
27. The logic function $f=\overline{(x \cdot \bar{y})+(\bar{x} \cdot y)}$ is the same as :
(A) $f=(\mathrm{x}+\mathrm{y})(\overline{\mathrm{x}}+\overline{\mathrm{y}})$
(B) $f=(\overline{\mathrm{x}}+\mathrm{y})(\mathrm{x}+\overline{\mathrm{y}})$
(C) $f=(\mathrm{x} . \mathrm{y})+(\overline{\mathrm{x}} . \overline{\mathrm{y}})$
(D) None of the above
28. The decimal equivalent of the Octal number (765) is :
(A) 501
(B) 522
(C) 555
(D) 424
29. The logic family with low power dissipation is :
(A) TTL
(B) CMOS
(C) DTL
(D) ECL
30. ASCII stands for :
(A) American Standard Code for Information Interchange
(B) • American System Code for Information Interchange
(C) American System Code for International Information
(D) None of the above
31. The output of 5 -input XOR gate is high when :
(A) All the inputs are low
(B) Even number of inputs are high
(C) Odd number of inputs are high
(D) None of the above
32. Gray code for 101011 is :
(A) 101011
(B) 111110
(C) 111101
(D) 110010
33. JK FF can be transformed into T FF by :
(A) Tying J and K
(B) Inverting J
(C) Inverting K
(D) None of the above
34. The number of FFs required to design Modulo-10 counter is :
(A) 10
(B) 3
(C) 2
(D) 4
35. 1 K bytes of memory is equal to :
(A) 1000 bytes
(B) 1024 bytes
(C) 1008 bytes
(D) None of the above
36. Master-slave FF is a modified version of:
(A) JK FF
(B) SR FF
(C) DFF
(D) None of the above
37. If the $\mu \mathrm{p}$ has address bus of 14 bit wide and hence the memory which can be accessed by this address bus is :
(A) 2 K bytes
(B) 32 K bytes
(C) 16 K bytes
(D) 64 K bytes
38. In a microprocessor, the address of the next instruction to be executed, is stored in :
(A) . Stack pointer
(B) Address latch
(C) Program counter
(D) General purpose register
39. MOV Dx, $S x$ in $8085 \mu \mathrm{p}$ is a :
(A) Data transfer instruction
(B) Control instruction
(C) Branching instruction
(D) Machine instruction
40. In an immediate addressing mode, the value of the operand is :
(A) Given in the instruction
(B) Contained in a memory location
(C) Present at the port
(D) None of the above
41. An array is :
(A) Collection of similar types of data items
(B) Collection of different types of data items
(C) Collection of float and integer values
(D) None of the above
42. Which one of the following controls the program flow :
(A) Switch
(B) for
(C) while
(D) All of the above
43. A header file ends with :
(A) :
(B) ;
(C) ,
(D) None of the above
44. Pointer to pointer is a variable which stores:
(A) The address of another pointer variable
(B) The immediate data
(C) Both float and integer data
(D) Address of integer variables only
45. In FM , modulation index m_{f} is equal to ($\Delta \mathrm{f}$ is the frequency deviation and f_{m} is the modulating signal frequency):
(A) $\Delta f f_{m}$
(B) $\frac{\Delta f}{f_{\mathrm{m}}}$
(C) $\frac{f_{\mathrm{m}}}{\Delta f}$
(D) $\frac{1}{\Delta f f_{\mathrm{m}}}$
46. In an amplitude modulated system, the total power radiated 112.5 W . The power of the carrier is 100 W . What is modulation index?
(A) 1
(B) 0.5
(C) 0.75
(D) None of the above
47. Analog Modulation scheme with lesser bandwidth requirement is :
(A) AM
(B) DSBSC
(C) SSBSC
(D) VSB
48. Bandwidth of FM becomes equal to that of $A m$ when :
(A) $\beta=1$.
(B) $\beta=0.5$
(C) $\beta=0.1$
(D) $\beta=10$
49. In TV transmission, picture signal is amplitude modulated and sound signal is frequency modulated. This is done because :
(A) It is not possible to frequency modulate the picture signal
(B) Bandwidth requirement is minimized
(C) Sound signal is more susceptible to noise than picture signal
(D) Synchronization of picture frames becomes easier
50. A signal can he faithfully recovered from its sampled version if:
(A) Sampling frequency is at least twice the highest frequency present in the signd
(B) Sampling frequency is at least twice the smallcst frequency present in the signal
(C) Sampling frequency is at most twice the highest frequency present in the signal
(D) None of the above
51. 1's and 0's are represented by two different frequencies in :
(A) ASK
(B) PSK
(C) FSK
(D) DPSK
52. The error in PCM can be reduced by :
(A) By decreasing the number of quantization levels
(B) • By increasing the number of quantization levels
(C) By increasing the Sampling frequency
(D) By decreasing Sampling frequency
53. In PMMC, damping force is provided by :
(A) Eddy currents
(B) Mechanical Friction
(C) Air
(D) None of the above
54. A swamping resistor is added in series with the coil of meters to avoid :
(A) Temperature error
(B) Frequency error
(C) Parallex error
(D) All of the above
55. The value of multiplier resistor required to design a voltmeter of 10 V range with a PMMC of internal resistance of $1 \mathrm{~K} \Omega$ and $I_{\text {fsd }}=100 \mu \mathrm{~A}$ is:
(A) $1 \mathrm{~K} \Omega$
(B) $9 \mathrm{~K} \Omega$
(C) $10 \mathrm{~K} \Omega$
(D) $99 \mathrm{~K} \Omega$
56. The value of external resistance at half scale deflection in case of series type ohmmeter is :
(A) Half the internal resistance of the meter
(B) The internal resistance of the meter
(C) $1 / 4^{\text {th }}$ of the internal resistance of the meter
(D) None of the above
57. Kelvin's double bridge is an extension of :
(A) Wheatstone bridge
(B) Schering bridge
(C) Maxwell's bridge
(D) Hay bridge
58. To measure using Lissasous Figures, CRO is operated in :
(A) XY mode
(B) X 5 mode
(C) TV mode
(D) None of the above
59. The purpose of the synchronizing control in a CRO is to :
(A) Focus the spot on the screen
(B) Lock the display of signal
(C) Adjust the amplitude of display
(D) Control the intensity of the spot
60. Which of the following is actuator :
(A) Microphone
(B) LVDT
(C) Piezoelectric transducer
(D) Loudspeaker

Electronics - 2010

M.Sc. Electronics

1. The current flowing $3 \mathrm{~K} \Omega$ resistance in the circuit given in Figure (1) will be:
(a) 10 mA
(b) 7 mA
(c) 4 mA
(d) 3 mA

Figure (1)
2. The value of $h_{\text {a }}$ and h_{f} for the circuit shown in Figure (2) respectively are
(a) $10 \mathrm{ohm},-0.2$
(b) $20 \mathrm{ohm},-0.4$
(c) $30 \mathrm{ohm},-0.5$
(d) $40 \mathrm{ohm},-1.0$

Figure (2)
3. A p-n junction diode is a
(a) linear device
(b) passive device
(c) unilateral device
(d) active linear device
4. Zener breakdown in a p-n junction results due to:
(a) impact ionization
(b) rupture of covalent bonds
(c) thermal instability
(d) barrier lowering
5. The de and ac load line of a transistor
(a) intersect with each other
(b) have positive slope
(c) are parallel to each other
(d) are parallel to voltage axis
6. Identify the false statement. The common collector amplifier offers :
(a) low output impedance
(b) high voltage gain
(c) high input impedance
(d) high current gain
7. In case of MOSFET the voltage at which the drain current saturates is known as :
(a) punch-through voltage
(b) breakdown voltage
(c) pinch-off voltage
(d) threshold voltage
8. Which of the following is not possible to fabricate in IC technology?
(a) Resistor
(b) Capacitor
(c) Diode
(d) Inductor
9. The value of the resistance R for maximum power transfer in the network shown in Figure (3) is :
(a) 25Ω
(b) 10Ω
(c) 9Ω
(d) 5Ω

Figure (3)
10. The circuit shown in Figure (4a) has the Norton equivalent circuit shown in Figure (4b). The value of $I_{e q}$ and $R_{e q}$ respectively will be :
(a) $0.25 \mathrm{~A}, 5 \Omega$
(b) $0.50 \mathrm{~A}, 10 \Omega$
(c) $5 \mathrm{~A}, 40 \Omega$
(d) $10 \mathrm{~A}, 20 \Omega$

11. The energy stored in a capacitor at any instant is given by :
(a) one half of the product of the capacitance and the square of the voltage across it at that instant
(b) the product of the capacitance and the square of the voltage across it at that instant
(c) one half of the product of the capacitance and the voltage across it at that instant
(d) the product of the capacitance and the voltage across it at that instant
12. The power factor is given by :
(a) peak power times 0.707
(b) the ratio of the true power to apparent power
(c) sine of the phase difference between voltage V and current I
(d) cos of the phase angle between true power and apparent power
13. A power amplifier has gain of 20 dB and an input voltage level of 2 mV . Assuming that the input and output impedances are the same. The voltage level at the amplifier output will be :
(a) 5 mV
(b) 10 mV
(c) 20 mV
(d) 40 mV
14. $\frac{a}{(s+b)}$ is the transfer function that realizes the characteristics of a :
(a) high pass filter
(b) band pass filter
(c) band reject filter
(d) low pass filter
15. When 1011 , is multiplied by 101 , the result will be :
(a) 111101
(b) 111011
(c) 110111
(d) 111110
16. A two input XOR gate has inputs A and B, the output of the gate is given by:
(a) $A B+A B$
(b) $\bar{A} B+A B$
(c) $A(A+B)$
(d) $A B$
17. The number of inputs and outputs in a full adder respectively are :
(a) 3 and 2
(b) 3 and 3
(c) 2 and 2
(d) 2 and 1
18. The logical expression $A+A B$ on simplification reduces to:
(a) $A B$
(b) A
(c) $A+B$
(d) B
19. Identify the false statement from the following :
(a) ECL gate do not saturate
(b) Complementary outputs are available with ECI. gate
(c) The power dissipation in ECL logic gates is low relative to the other logic families
(d) Capacitive loading limits the fan out in ECL gate
20. The gray code of the binary number 101010_{2} is :
(a) 010101_{2}
(b) 010110,
(c) 111011,
(d) 111111_{2}
21. The characteristic values of power dissipation and propagation delay time for Low power Schottky TTL devices are respectively :
(a) $10 \mathrm{~mW}, 10 \mathrm{~ns}$
(b) $15 \mathrm{~mW}, 6 \mathrm{~ns}$
(c) $2 \mathrm{~mW}, 10 \mathrm{~ns}$
(d) $100 \mathrm{~mW}, 35 \mathrm{~ns}$
22. With an $R S$ latch a high S and a low R sets its output to \qquad , and a low S and high R sets its output to \qquad _.
(a) 0,0
(b) 1,0
(c) 0,1
(d) 1,1
23. N number of flip-flops connected in series divide the clock frequency by a factor of:
(a) 2^{N}
(b) $2^{\mathrm{N}-1}$
(c) $2^{\mathrm{N}+1}$
(d) N
24. A mod-10 counter can divide the clock frequency by a factor of:
(a) 16
(b) 10
(c) 4
(d) 2
25. The maximum number of memory locations that an address bus with 16 bits can access is :
(a) 16000
(b) 32536
(c) 65536
(d) 60536
26. The 8156 is a 2,048 bit static RAM with 256 words of 8 bits each. The number of address lines this RAM has :
(a) 256
(b) 32
(c) 16
(d) 8
27. Identify the correct statement from the following:
(a) It is much simpler to work with dynamic RAMs than static RAMs with regard to design complexity of the RAM chips
(b) The static RAM contains more memory cells than dynamic RAM of the same physical size
(c) The dynamic RAM need to refresh the memory every few milliseconds
(d) In construction of a static RAM a MOSFET and capacitor are required.
28. The Boolean expression $(\overline{A B})(\overline{A B})$ on simplification reduces to:
(a) $A+B$
(b) $A \oplus B$
(c) $A B$
(d) $A(A+B)$
29. The output of the circuit shown in Fig (5) will be given by :
(a) $Y=A+B$
(b) $Y=A-B$
(c) $Y=A \oplus B$
(d) $Y=\bar{A}+\bar{B}$

30. Adding inverters to the inputs of an AND gate produces:
(a) OR function
(b) NOR function
(c) Exclusive-OR function
(d) XNOR function
31. Identify the false statement from the following:
(a) ECL gate usually have complementary outputs
(b) ECL. gate has higher power requirements
(c) ECL gate has higher noise margins than that of TTL
(d) High speed operation is not possible in case of ECL gates because the transistors saturate in ECL gates.
32. The output Y of the circuit shown in Fig. (6) is given by :
(a) $Y=A \overline{B C}$
(b) $Y=\overline{A B C}$
(c) $Y=A B C$
(d) $Y=A B C$

33. Ones complement of a binary number is found by:
(a) changing all zeros of the number to ones and all zeros of the number to zeros then adding 1 to the resultant number
(b) changing all zeros of the number to ones and all ones of the number to zeros
(c) changing only all zeros of the number to ones
(d) changing only all ones of the number to zeros
34. The number of restart instructions in $8085 \mu \mathrm{P}$ is :
(a) 8
(b) 5
(c) 4
(d) 1
35. The input pins of $8085 \mu \mathrm{P}$ chip for the interrupt signal are from :
(a) Pins 11 to 15
(b) Pins 6 to 10
(c) Pins 1 to 5
(d) Pins 14 to 18
36. On execution of the following programme:

LXIH, !FFFH
INXH
MOV A, H
ADI 10 H
STA 1000 H
HLT
The contents of the memory location 1000 H will be :
(a) FF_{H}
(b) 10_{H}
(c) 30_{H}
(d) $2 \mathrm{~F}_{\mathrm{H}}$
37. The signals carried by pins 29 and 33 of the $8085 \mu \mathrm{P}$ respectively are :
(a) $\overline{W R}, \overline{R D}$
(b) HOLD, HLDA
(c) $S_{o} S_{j}$
(d) RESETN,$C L K$
38. If the current amplification factor α of a transistor is 0.99 , the current amplification factor β of the transistor will be :
(a) 9
(b) 49
(c) 79
(d) 99
39. For a common emitter configuration, the collector current I_{e} for a given base current I_{B} is given by :
(a) $\mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\text {сво }}$
(b) $\mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}}+\left(1-\mathrm{I}_{\text {сво }}\right)$
(c) $\mathrm{I}_{\mathrm{C}}=\beta I_{\mathrm{B}}+(1+\beta) \mathrm{I}_{\text {сво }}$
(d) $\mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}}+\beta \mathrm{I}_{\mathrm{CBO}}$
40. A transistor having h-parameter $\mathrm{h}_{\mathrm{ie}}=5000 \Omega, \mathrm{~h}_{\mathrm{re}}=1.6 \times 10^{-4}, \mathrm{~h}_{\mathrm{fe}}=56, \mathrm{~h}_{\mathrm{se}}=50 \mu \mathrm{~A} / \mathrm{V}$. The current gain of the CE amplifier with load resistance of $50 \mathrm{~K} \Omega$ will be :
(a) -8
(b) -16
(c) -32
(d) -64
41. The decibel equivalent of power gain 100 is :
(a) 10 dB
(b) 20 dB
(c) 30 dB
(d) 40 dB
42. Identify the false statement from the following:
(a) In a Darlington amplifier configuration the output of one amplifier is coupled into the input of the next one by directly connecting emitter of one transistor to the base of the other transistor
(b) Darlington amplifier provides excellent characteristics of high input impedance and low output impedance
(c) Darlington amplifier provides low current gain
(d) Darlington amplifier is often used in high gain amplifiers because of its high current gain
43. How many different sets of input conditions of A, B, and C will produce a high output in the circuit shown in Figure (7)?
(a) 10
(b) 8
(c) 6
(d) 4

44. In class-A amplifier when a transistor is driven from the edge of saturation region to cutoff, then for every 1 W output power the power consumed internally is :
(a) 1 W
(b) 2 W
(c) 3 W
(d) 4 W
45. The trans-conductance of a MOSFET is :
(a) independent of the drain current
(b) directly proportional to the drain current
(c) directly proportional to square root of the drain current
(d) inversely proportional to square root of the drain current
46. Unijunction transistor is a :
(a) variable capacitance device
(b) relaxation oscillator
(c) current controlled device
(d) voltage controlled device
47. Identify the correct statement from the following. In an RC coupled amplifier :
(a) the low frequency response is affected by junction capacitances and high frequency response is affected by coupling capacitor
(b) only high frequency response is affected by coupling and bypass capacitors
(c) the low frequency response is affected by coupling and bypass capacitors
(d) the coupling capacitor do not affect the frequency
48. Class-B push-pull amplifiers there exists
(a) intermodulationdistortion
(b) cross-over distortion
(c) evenharmonic distortion
(d) neither even harmonic nor odd harmonic distortion
49. The maximum theoretical efficiency of an amplifier in class-B operation is
(a) 78.5%
(b) 50.5%
(c) 40.5%
(d) 25.5%
50. If the emitter resistance of a common emitter amplifier is not bypassed by a capacitor the emitter resistance provides a :
(a) Negative voltage feedback
(b) Current series feedback
(c) Voltage shunt feedback
(d) Positive current feedback
51. The current I_{D} in circuit shown in Figure (8) will be equal to :
(a) 5 mA
(b) 10 mA
(c) 15 mA
(d) 20 mA
52. The circuit shown in Figure (9) is a :
(a) Logarithmic amplifier
(b) Differentiator
(c) Antilogarithmic amplifier
(d) Integrator

53. If the internal gain of an amplifier is 300 and feedback fraction β is 0.03 , the loop gain of the amplifier is :
(a) 3
(b) 30
(c) 90
(d) 100
54. If C_{BE} and C_{CB} represent the base-emitter and collector-base capacitances of a transistor respectively. If the transistor is employed in common emitter amplifier having voltage gain A , the input capacitance C_{n} of the amplifiers is given by :
(a) $\mathrm{C}_{\mathrm{m}}=\mathrm{C}_{\mathrm{BE}}+\mathrm{AC}_{\mathrm{CB}}$
(b) $\mathrm{C}_{\mathrm{n}}=\mathrm{C}_{\mathrm{BE}}+\mathrm{C}_{\mathrm{CB}}$
(c) $\mathrm{C}_{\mathrm{m}}=\mathrm{C}_{\mathrm{BE}}+(1+\mathrm{A}) \mathrm{C}_{\mathrm{CB}}$
(d) $\mathrm{C}_{\text {in }}=\mathrm{C}_{\mathrm{CB}}+(1+\mathrm{A}) \mathrm{C}_{\mathrm{BE}}$
55. Which of the following pin pairs in 741 OpAmpIC are for power supply connections?
(a) 2 and 3
(b) 6 and 8
(c) 1 and 5
(d) 7 and 4
56. Identify the false statement. The ideal OpAmp would exhibit:
(a) Infinite voltage gain
(b) Infinite input resistance
(c) Zero output voltage when input voltage is zero
(d) Infinite output resistance
57. The minimum quantity that an instrument can measure is knownas:
(a) Precision
(b) Resolution
(c) Accuracy
(d) Sensitivity
58. The relative limiting error of product of two terms is equal to the :
(a) sum of the of the relative error of the terms
(b) difference of the relative error of the terms
(c) division of the relative error of the terms
(d) product of the relative error of the terms
59. In a differential amplifier the difference mode gain $\mathrm{A}_{\mathrm{vD}}=1000$ and $\mathrm{CMMR}=100$. If the inputs V_{1} and V_{2} of the amplifier are 1.0 mV and 0.9 mV respectively, the output voltage of the amplifier will be:
(a) 10.95 mV
(b) 20.95 mV
(c) 109.5 mV
(d) 1095 mV
60. A moving coil galvanometer is converted into a DC ammeter by connecting :
(a) a capacitor of appropriate capacitance across the galvanometer
(b) a resistor of appropriate resistance across the galvanometer
(c) a resistor of appropriate resistance in series with galvanometer
(d) an inductor of appropriate inductance across the galvanometer

ROUGH WORK

ELECTRONICS

1. In a bridge-type full-wave rectifier, if V_{m} is the peak voltage across the secondary of the transformer, the maximum voltage coming across each revereebiased diode is :
(a) V_{m}
(b) $2 V_{m}$
(c) $\frac{1}{2} V_{m}$
(d) $\quad V_{m} / \sqrt{2}$
2. Which of the following is a unipolar device ?
(a) P-N junction diode
(b) Zener diode
(c) Tunnel diode
(d) Schottky diode
3. Lowest output resistance is obtained in :
(a) CB
(b) CE
(c) CC
(d) both (a) and (b)
4. In the case of BJT amplifier, bias stability is achieved by :
(a) keeping the base current constant
(b) keeping I_{C} and $V_{C E}$ constant irrespective of the undesired changes in base current
(c) keeping the temperature constant
(d) keeping the temperature and base current constant
5. JFET has main drawback of :
(a) having low input impedance
(b) having high output impedance
(c) being noisy
(d) having small gain-bandwidth product
6. The most popular form of IC package is :
(a) TO-5
(b) DIL
(c) Flat Pack
(d) All of the above
7. A network is said to be non-linear if it does not satisfy :
(a) homogenity condition
(b) superposition condition
(c) both (a) and (b)
(d) associative condition
8. The superposition theorem is applicable to :
(a) linear, non-linear and time variant responses
(b) linear and non-linear resistors only
(c) linear responses only
(d) none of the above
9. Selectivities of different resonance circuits are compared in terms of their :
(a) impedances
(b) reactances
(c) frequencies
(d) bandwidths
10. The dual of a loop is :
(a) twig
(b) node
(c) mesh
(d) tree
11. A square wave with a period of $10 \mu s$ drives a T flip-flop. The period of the output signal will be :
(a) $100 \mu \mathrm{~s}$
(b) $20 \mu \mathrm{~s}$
(c) $10 \mu \mathrm{~s}$
(d) $5 \mu \mathrm{~s}$
12. While \qquad is the fastest unsaturated logic gate \qquad has the excellent noise immunity.
(a) ECL, TTL
(b) TTL, ECL
(c) ECL, HTL
(d) RTL, DTL
13. The ASCII is a 7-bit code for :
(a) letters
(b) numbers
(c) other symbols
(d) all of the above
14. Odd parity of wood can be conveniently tested by :
(a) XOR gate
(b) OR gate
(c) XNOR gate
(d) NAND
15. A multiplexer is known as :
(a) multivibrator
(b) data selector
(c) decoder
(d) seven segment display
16. For which of the following flip-flop the output is clearly defined for all considerations of two inputs?
(a) D
(b) RS
(c) JK
(d) T
17. A complete microcomputer system consists of :
(a) microprocessor
(b) memory
(c) add-ons
(d) all of the above
18. The most common addressing techniques employed by a CPU is :
(a) immediate
(b) direct
(c) indirect
(d) all of the above
19. Which of the following is the user programmed semiconductor memory ?
(a) SRAM
(b) DRAM
(c) EPROM
(d) All of the above
20. For a memory system, the cycle time is :
(a) same as the access time
(b) longer than the access time
(c) shorter than the access time
(d) none of the above
21. In C programming language, which of the following type of operators enjoys highest precedence :
(a) relational operators
(b) equality operator
(c) logical operators
(d) arithmetic operators
22. The single character input/output functions are :
(a) scanf() and printf)
(b) getchar (and printf)
(c) scanf() and putchar)
(d) getchar) and putchar(.)
23. The two statements that can be used to change the flow of control are :
(a) if and switch
(b) if and while
(c) switch and do-while
(d) break and continue
24. The comma operator (,) is primarily used in conjunction with :
(a) for atatement
(b) ifelse statement
(c) do-while statement
(d) all of the above
25. Arrays that do not have their dimensions explicitly specified are called :
(a) unsized arrays
(b) undimensional arrays
(c) initialized arrays
(d) no size of arrays
26. C contains two special pointer operators :
(a) * and \&
(b) * and \&\&
(c) $\&$ and $\& \&$
(d) $\%$ and \&
27. The feature that allows you to define new data types that are equivalent to existing data types is :
(a) pointer
(b) typedef
(c) structure
(d) union
28. A union consists of a number of elements that:
(a) all occupy the same space in memory
(b) must be structures
(c) are grouped neat to each other in memory
(d) all have the same type
29. Which of the following is not a linked data structure ?
(a) Linear linked list
(b) Circular linked list
(c) Linked list with multiple pointers
(d) None of the above
30. In linked lists with multiple pointers :
(a) components are all linked together in some sequential manner
(b) there is no beginning and no end
(c) components are arranged hierarchically
(d) forward and backward transversal within the list is permitted
31. Which of the following parameters is used for distinguishing between a small signal and a large signal amplifier ?
(a) Voltage gain
(b) Frequency response
(c) Harmonic distortion
(d) Input/output impedances
32. Class AB operation is often used in power amplifiers in order to :
(a) get maximum efficiency
(b) remove even harmonics
(c) over come crossover distortion
(d) reduce collector dissipation
33. A thyristor is a semiconductor switch which is :
(a) unilateral and astable
(b) bilateral and astable
(c) unilateral and bistable
(d) bilateral and bistable
34. The crystal oscillator frequency is very stable due to :
(a) rigidity of crystal
(b) size of crystal
(c) structure of crystal
(d) high \mathbf{Q} of the crystal
35. The requirement of an oscillator using positive feedback amplifier as an oscillator, is that :
(a) there must be positive feedback
(b) initially the value of loop gain AB must be greater than unity
(c) after the desired level is reached the loop gain AB must decrease to unity
(d) all of the above
36. UJT when used for triggering an SCR has waveform :
(a) sine wave
(b) square wave
(c) saw tooth wave
(d) trapezoidal
37. Most of the linear ICs are based on the two transistor differential amplifier because of its :
(a) input voltage dependent linear transfer characteristic
(b) high voltage gain
(c) high input resistance
(d) high CMRR
38. The type of multivibrator used for generation of clock pulses is :
(a) monostable multivibrator
(b) astable multivibrator
(c) bistable multivibrator
(d) none of the above
39. The material used for the construction of LED is :
(a) Si
(b) Ge
(c) GaAsP
(d) None of the above
40. Which of the following is not classified as a photoconductive device ?
(a) a photovoltaic cell
(b) a PIN photodiode
(c) a phototransistor
(d) a light dependent resistor

Electronics
41. Electronic voltmeter provides more accurate readings in high resistance circuits as compared to a non-electronic voltmeter because of :
(a) high V/ohm ratings
(b) high ohm/V ratings
(c) low meter resistance
(d) high resolution
42. In a CRT the length l of the magnetic field in the initial direction of the electron beam when compared with the radius of curvature of that beam is:
(a) very large
(b) very small
(c) equal
(d) negligithy small
43. The Miller sweep circuit normally used in a CRO is basically :
(a) voltage to current converter circuit
(b) a current to voltage converter circuit
(c) an integrator circuit
(d) a differentiator
44. The disadvantage of Maxwell's bridge is that:
(a) inductance measurement is frequency dependent
(b) it cannot be used to measure inductance for large values of Q
(c) both inductance and Q cannot be measured
(d) resistance of the inductor measurement is frequency dependent
45. What type of bridge is recommended for measuring resistances less than 1 ohm ?
(a) Wheatstone bridge
(b) Schering bridge
(c) Maxwell bridge
(d) Kelvin bridge
46. A voltmeter has 100 divisions on $0-100 \mathrm{~V}$ range. One-tenth of each division can be read with certainty. The resolution of the meter is :
(a) 0.1 V
(b) 0.01 V
(c) 1.0 V
(d) 1.01 V
47. The resistance of a strain gauge should be high :
(a) to increase sensitivity
(b) to reduce hysteresis effects
(c) to swamp out the effects of variations of resistance in other parts of the bridge
(d) none of the above
48. Piezo electric transducers are :
(a) active transducers
(b) passive transducers
(c) secondary transducers
(d) none of the above
49. The resolution of a digital ammeter with 3-digit display is :
(a) $1 / 2$
(b) $1 / 3$
(c) $1 / 8$
(d) $1 / 4$
50. A set of independent current measurements were taken and recorded as follows $12.8 \mathrm{~A}, 12.2 \mathrm{~A}, 12.5 \mathrm{~A}, 13.1 \mathrm{~A}, 12.9 \mathrm{~A}$ and 12.4 A . The standard deviation is :
(a) 0.283 A
(b) 0.300 A
(c) 0.399 A
(d) 0.414 A

Electronics
51. In a 100% amplitude modulated signal, if the total transmitted power is \mathbf{P}, then carrier power will be :
(a) $\frac{2}{3} \mathrm{P}$
(b) $\frac{1}{2} \mathrm{P}$
(c) $\frac{1}{3} \mathrm{P}$
(d) $\frac{1}{4} \mathrm{P}$
52. In a narrow band FM system, the highest modulating frequency is f_{m}. The bandwidth of the system will be :
(a) $6 f_{m}$
(b) f_{m}
(c) $2 f_{m}$
(d) $10 f_{m}$
53. In TV transmission, picture signal is amplitude modulated and sound signal is frequency modulated. This is done because :
(a) it is not possible to frequency modulate the picture signal
(b) bandwidth requirement is minimised
(c) sound signal is more susceptible to noise than picture signal
(d) synchronisation of picture frames becomes easier
54. The most common detector used in an AM radio broadcast receiver is :
(a) envelope detector
(b) coherent detector
(c) discriminator
(d) ratio detector
65. The main advantage of PCM system is :
(a) lower bandwidth
(b) lower power
(c) lower noise
(d) none of the above
56. Pulse communication system that is inherently highly immune to noise is :
(a) PAM
(b) PWM
(c) PPM
(d) PCM
57. Which of the following antenna gives circular polarization ?
(a) Yagi-uda
(b) Parabolic
(c) Dipole
(d) Helical
58. The ground wave eventually disappears as one moves from transmitter because of :
(a) surface attenuation
(b) diffraction
(c) loss of line of sight
(d) tilting
59. Which of the following statements is not valid for FM systems ?
(a) It needs less bandwidth
(b) It offers better S / N ratio
(c) It requires less modulating power
(d) All of the above
60. In a TV which of the following stages has AGC bias ?
(a) Mixer
(b) Local oscillator
(c) RF amplifier
(d) AFT discriminator

ELECTRONICS

1. A differential amplifier has common-mode gain of 0.02 db and differentialmode gain of 200 db . Its CMMR in $\mathbf{~ d b}$ is :
(A) 0.02 db
(B) 4.80 db
(C) 80.0 db
(D) 200.0 db
2. If the cut-in voltage for silicon diodes D_{1} and D_{2} used in the circuit shown in Fig.(1) is 0.6 V , the output voltage V_{o} for $\mathrm{V}_{1}=5 \mathrm{~V}$ and $\mathrm{V}_{2}=5 \mathrm{~V}$ is :

Fig. (1)
(A) 0 V
(B) 5 V
(C) 10 V
(D) 15 V
3. Identify the true statement. An emitter follower has :
(A) low input impedance and high voltage gain
(B) high output impedance and unity current gain
(C) low input impedance and unity current gain
(D) high input impedance and unity voltage gain
4. Bridge rectifiers are preferred because:
(A) ripple factor of the bridge rectifier is less than that of centre-tap fullwave rectifier
(B) PIV in case of bridge rectifier is half that of a centre-tap full-wave rectifier
(C) the regulation in case of bridge rectifiers is higher than that in case of centre-tap full-wave rectifier
(D) the rectification efficiency is larger than that in case of centre-tap fullwave rectifier
5. In a $p-n$ junction the Zener breakdown is caused by :
(A) field ionization
(B) impact ionization
(C) thermal runaway
(D) punchthrough mechanism
6. Identify the true statement. In case of avalanche breakdown of a $p-n$ junction :
(A) direct band rupture occurs due to high electric field
(B) the charge carriers acquire high energies sufficient to produce electronhole pairs by impact ionization
(C) electron-hole pairs are generated because of the increase in junction temperature
(D) negligible current flows across the junction
7. A transistor is said to be in saturation region when :
(A) emitter-base junction is forward biased and collector-base junction is reverse biased
(B) both emitter-base junction and collector-base junction are reverse biased
(C) both emitter-base junction and collector-base junction are forward biased
(D) emitter base-junction is reverse biased and collector-base junction is forward biased
8. Semiconductors having Fermi level within the allowed bands are known as :
(A) degenerate semiconductors
(B) non-degenerate semiconductors
(C) compensated semiconductors
(D) intrinsic semiconductors
9. In case of a MOSFET the drain-sourtee voltage at which the drain current becomes nearly constant is called :
(A) punchthrough voltage
(B) cut-in voltage
(C) early voltage
(D) pinch-off voltage
10. The use of a bypass capacitor across emitter resistor in transistor circuits is to :
(A) avoid shift in the Q-point
(B) stabilize the circuit against temperature variations
(C) avoid loss of signal gain
(D) stabilize the circuit against the variation in β
11. For a $p-n-p$ transistor if $\alpha=0.98$ and $\mathrm{I}_{\text {CBO }}=5 \mu \mathrm{~A}$, then for a base current of $100 \mu \mathrm{~A}$ the collector current I_{C} is :
(A) $\quad 1.50 \mathrm{~mA}$
(B) 2.50 mA
(C) 3.15 mA
(D) 5.15 mA
12. The voltage gain of a source follower employing FET is usually :
(A) slightly less than unity but positive.
(B) equal to unity but negative.
(C) never less than +200 .
(D) slightly greater than unity but negative
13. Under thermal equilibrium the product of the electron and hale carrier concentrations in a semiconductor is :
(A) dependent on the doping concentrations
(B) independent on the doping concentrations
(C) greater than square of the intrinsic concentrations
(D) less than square of the intrinsic concentrations
14. The Schottky diode clamping across the collector-base junction of the transistor in case of Schottky-TTL is used :
(A) to increase the current gain of the transistor
(B) to prevent transistor fromi junction breakdown
(C) to prevent transistor from: saturation
(D) to prevent transistor from thermal runaway
15. According to the De Morgan's theorem:
(A) An n-input NAND gate is equivalent to an n-input bubbled AND gate
(B) An n-input OR gate is equivalent to an n-input bubbled AND gate
(C) OR gate and NOR gate are complement to each other
(D) An n-input NAND gate is equivalent to n-input bubbled OR-gate
16. The output logic Y of the circuiti shown in Fig. (2) is :

Fig. (2)
(A) ABC
(B) AB
(C) AC
(D) A

Electronics
17. The number of load gates that a logic device can drive reliably is called the :
(A) fan-out
(B) fan-in
(C) standard load
(D) current sink
18. The potential divider method of biasing in transistor amplifiers is used as it :
(A) increases the voltage gain of the amplifier
(B) makes the operating point stable against the variations of β
(C) reduces the noise of the amplifier
(D) prevents transistor from thermal run away
19. The equivalent resistance between \mathbf{A} and \mathbf{B} terminals of the circuit shown in Fig. (3) is :

Fig. (3)
(A) R
(B) 2 R
(C) $(1+\sqrt{5}) R$
(D) $\quad(1+\sqrt{10}) R$
20. For a step voltage input an integrator produces :
(A) a sine wave
(B) a square wave
(C) a narrow spike
(D) a ramp
21. For the circuit shown in Fig. (4) the output $\mathrm{V}_{\text {out }}$ will be :

Fig. (4)
(A) -17 V
(B) -15 V
(C) -9.6 V
(D) -6 V
22. The resolution of 4 -digit $0-10 \mathrm{~V} D \mathrm{DM}$ is :
(A) 1 V
(B) 1 mV
(C) $1 \mu \mathrm{~V}$
(D) 1 pV
23. For an input voltage $\mathrm{V}_{\mathrm{in}}=10 \sin (2000 t) \mu \mathrm{V}$ the output voltage $\mathrm{V}_{\text {out }}$ for the circuit shown in Fig. (5) will be :

Fig. (5)
(A) $-100 \cos (2000 t) \mu \mathrm{V}$
(B) $-100 \sin (2000 t) \mu \mathrm{V}$
(C) $-500 \cos (2000 t) \mu \mathrm{V}$
(D) $-500 \sin (2000 t) \mu V$
24. One of the following devices has no negative region in its static I-V characteristics. The device is :
(A) Thyristor
(B) Tunnel diode
(C) Gunn diode
(D) Zener diode
25. If the data stored at memory locations 0800 and 0801 is $2 \mathrm{C}_{\mathrm{H}}$ and 51_{H} respectively, then on execution of the program :
LDA 0800
MOV B,A
LDA 0801
ADD B
STA 0802
the contents of the memory location 0802 will be :
(A) $7 \mathrm{D}_{\mathrm{H}}$
(B) $7 \mathrm{E}_{\mathrm{H}}$
(C) $\quad 20_{\mathrm{H}}$
(D) 51_{H}
26. LDA is a. \qquad byte instruction and belongs to. \qquad .addressing mode group.
(A) one, direct
(B) two, register
(C) three, direct
(D) two, intermediate
27. Early voltage is usually determined from the :
(A) input characteristics of CE transistor
(B) input characteristics of CB transistor
(C) output characteristics of CB transistor
(D) output characteristics of CE transistor
28. If the current gain α of a transistor is 0.99 , the current gain β of the transistor will be :
(A) 49.0
(B) 50.0
(C) 69.0
(D) 99.0
29. The maximum frequency of oscillation of a Wien bridge oscillator employing an Op-Amp is limited by the :
(A) slew rate of the operational amplifier
(B) output offset voltage of the operational amplifier
(C) output offset current of the operational amplifier
(D) gain of the amplifier
30. In case of a phase shift oscillator, each RC circuit produces a phase shift of :
(A) 30°
(B) 60°
(C) 90°
(D) 180°
31. In every practical oscillator the loop gain is kept :
(A) exactly equal to the unity
(B) slightly less than unity
(C) slightly greater than unity
(D) not less than 10
32. Identify the true statement from the following :
(A) The input resistance in a voltage series feedback amplifier decreases while that in a voltage-shunt feedback amplifier increases
(B) The input resistance both in a voltage-series feedback amplifier and voltage-shunt feedback amplifier decreases
(C) The input resistance both in a voltage-series feedback amplifier and voltage-shunt feedback amplifier increases
(D) The input resistance in a voltage-series feedback amplifier increases while that in a voltage-shunt feedback amplifier decreases
33. The temperature coefficient of resistance in case of semiconductors is :
(A) zero
(B) infinity
(C) positive
(D) negative
34. The Fermi energy level in case of intrinsic semiconductors lies :
(A) halfway between the conduction and valance bands
(B) within the valance band
(C) within the conduction band
(D) close to the bottom of the conduction band

9
P.T.O.
35. When a sinusoidal voltage of frequency 60 Hz is applied across the primary terminals of the transformer in case of full-wave rectifier, the lowest frequency alternating component across the load will have the frequency :
(A) 30 Hz
(B) 60 Hz
(C) 90 Hz
(D) 120 Hz
36. The reverse leakage current $\mathrm{I}_{\mathrm{CBO}}$:
(A) increases with increase in I_{E}
(B) decreases with increase in temperature
(C) increases with increase in temperature
(D) decrease with increase in V_{CB}
37. In case of RC coupled amplifier the main component which results in decrease in its gain in low frequency range :
(A) is coupling capacitor
(B) are the junction capacitances
(C) is the emitter resistance
(D) is emitter resistance bypass-capacitor
38. In case of class-A operation of an amplifier the output current flows for :
(A) full cycle
(B) less than full cycle but more than half cycle
(C) half cycle
(D) less than half cycle
39. The maximum efficiency of class-B operation will not exceed :
(A) 25%
(B) 50%
(C) 60.5%
(D) 78.5%
40. The circuit shown in Fig. (6) is :

Fig. (6)
(A) an integrator
(B) a logarithmic amplifier
(C) a differentiator
(D) an adder
41. The Boolean expression for a two input A and B exclusive-OR gate is given by :
(A) $f(A, B)=A+B$
(B) $f(A, B)=A B$
(C) $\mathrm{f}(\mathrm{A}, \mathrm{B})=\overline{\mathrm{A}} \mathrm{B}+\mathrm{A} \overline{\mathrm{B}}$
(D) $\quad f(A, B)=\overline{\mathbf{A}}+\mathbf{B}$
42. The Boolean expression $A+\bar{A}$ will always have logic value :
(A) 0
(B). A
(C) $\overline{\mathbf{A}}$
(D) 1
43. The Boolean expression $A+\bar{A} B$ is equal to :
(A) AB
(B) $\mathrm{A}+\mathrm{B}$
(C) $\overline{\mathrm{A}} \mathrm{B}+\mathbf{A} \overline{\mathrm{B}}$
(D) A
44. The output Y in the circuit shown in Fig. (7) is given by :

Fig. (7)
(A) $\mathrm{A}+\mathrm{B}$
(B) AB
(C) $\overline{\mathbf{A}} \mathbf{B}+\mathbf{A} \overline{\mathbf{B}}$
(D) $(\mathbf{A}+\overline{\mathrm{B}})(\overline{\mathrm{A}}+\mathrm{B})$
45. For $50 \mu \mathrm{~A}$ meter movement with a coil resistance of 200Ω. What shunt resistance is required to extend the range to $250 \mu \mathrm{~A}$?
(A) 200Ω
(B) 150Ω
(C) 100Ω
(D) 50Ω
46. If m is the modulation index the ratio between the total power in the amplitude modulated wave to the unmodulated carrier power is given by :
(A) $m^{2} / 2$
(B) $1+m^{2} / 2$
(C) $1+m^{2}$
(D) $\quad\left(1+m^{2}\right) / 2$
47. A carrier wave is simultaneously modulated by two sine waves with modulation indices of 0.3 and 0.4 , the total modulation index is :
(A) 1.7
(B) 0.7
(C) 0.5
(D) 0.34
48. Identify the true statement from the following. In a superheterodyne receiver :
(A) a constant frequency difference is maintained between the local oscillator and the RF circuit
(B) no local oscillator is used
(C) a frequency difference equal to twice the intermediate frequency is maintained between local oscillator and RF circuit
(D) local oscillator frequency is normally double the IF
49. Identify the false statement from the following :
(A) FM has an infinite number of side bands.
(B) In FM the total transmitted power always remains constant with depth of modulation
(C) In FM the amplitude of the carrier component does not remain constant
(D) In FM with increased depth of modulation the required bandwidth is decreased
50. The image frequency of a superheterodyne receiver :
(A) is not rejected by the IF tuned circuit
(B) is produced within the receiver
(C) is independent of the frequency to which the receiver is tuned
(D) is due to the insufficient adjustment of channel receiver
51. The carrier wave $V_{c}=80 \sin \left(2 \times 10^{6} t\right)$ is amplitude modulated by a modulating signal $\mathrm{V}_{m}=4 \sin (200 t)$, the modulation index is :
(A) 0.01
(B) 0.05
(C) 0.25
(D) 0.50
52. If δ and f_{m} represent the frequency deviation and modulating frequency the modulation index of FM is given by :
(A) f_{m} / δ
(B) δ / f_{m}
(C) δf_{m}
(D) $\delta f_{m} / 2$
53. In case of frequency modulation :
(A) the total number of side bands depend on the modulation index
(B) the carrier frequency cannot disappear.
(C) the amplitude of any side band does not depend on the modulation index
(D) the amplitude of any side band depends on the modulation index
54. In C-programming the while (expression) statement is used to carry out looping operation. The included statements will executed repeatedly as long as the value of the expression is :
(A) zero
(B) one only
(C) negative
(D) not zero.
55. In C-programming the expression $++\mathbf{k}$ is equivalent to :
(A) $k=k+1+1$
(B) $\quad k=k-1$
(C) $\mathbf{k}=\mathbf{k}+1$
(D) $\mathbf{k}=\mathbf{k}+\mathbf{k}$
56. In C-programming the global variables are the variables defined :
(A) inside the function program
(B) outside the main program
(C) inside the main program
(D) in function declaration statement
57. Identify the false statement from the following :
(A) A pointer is a variable which holds the memory address of another variable.
(B) A pointer allows to return structured variables from a function
(C) A pointer allows to pass variables, arrays, functions, strings and structures to a function arguments
(D) A pointer does not support dynamic allocation and deallocation of memory segments
58. Identify the false statement. In C-programming :
(A) all processor directives begin with the sharp sign \#
(B) the processor directive is terminated by a semicolon
(C) only one processor directive can occur in a line
(D) the processor directive may appear at any place in source file
59. The electromagnetic wave when travelling through the free space will suffer only one of the following :
(A) Reflection
(B) Refraction
(C) Attenuation
(D) Absorption
60. The highest frequency that will return to earth by a given atmospheric layer after being beamed straight up at it is known its :
(A) critical frequency
(B) maximum useable frequency
(C) window
(D) resonant frequency

ELECTRONICS

1. In case of amplitude modulation if three sine waves simultaneously modulate the carrier with individual modulation indices m_{1}, m_{2} and m_{3}, then total modulation index is given by :
(A) $\sqrt{m_{1}^{2}+m_{2}^{2}+m_{3}^{2}}$
(B) $m_{1}+m_{2}+m_{3}$
(C) $\sqrt[3]{m_{1} m_{2} m_{3}}$
(D) $\quad\left(m_{1}+m_{2}+m_{3}\right) / 2$
2. Identify the false statement with regard to advantages and disadvantages of FM :
(A) FM is, or can be made, relatively immune to the effects of noise
(B) A much smaller channel is required by FM, up to $1 / 10$ times as amall as that needed by AM
(C) FM transmitting and receiving equipments tend to be more complex
(D) The amplitude of the FM wave is constant. It is thus independent of modulation index
3. The absorption of radio waves by the atmosphere depends on :
(A) the distance from the transmitter
(B) the polarization of the wave
(C) the frequency of the wave
(D) both the distance and the polarization of the wave
4. The most suitable method out of the following in measurement of the resistance of expected value less than 1Ω is :
(A) Limit bridge method
(B) Wheatstone's bridge method
(C) Loss of charge method
(D) Kelvin's bridge method
5. The diffusion current density is :
(A) directly proportional to the concentration gradient of charge carriers
(B) inversely proportional to the concentration gradient of charge carriers
(C) independent of the concentration gradient of charge carriers
(D) directly proportional to concentration of charge carriers
6. With increase in temperature :
(A) the resistivity of a conductor decreases while that of a semiconductor increases
(B) the resistivity of both conductor and semicodnuctor increases
(C) the resistivity of both conductor and semiconductor decreases
(D) the resistivity of a conductor increases and that of semiconductor decreases
7. The ratio of electron and hole concentrations in case of an intrinsic semiconductor is:
(A) greater than one
(B) less than one
(C) equal to one
(D) equal to square of the intrinsic carrier concentration

Electr.
8. In case of a centre-tap full-wave rectifier if $V_{\text {max }}$ is the peak voltage across the secondary of the transformer, the voltage appearing across the nonconducting diode is :
(A) $V_{\max }$
(B) $2 \mathrm{~V}_{\max }$
(C) $\sqrt{2} \mathrm{~V}_{\text {max }}$
(D) $\quad V_{\max } / 2$
9. In common base configuration if I_{E} is the emitter current and α is the current gain, the part of the emitter current which forms the collector current is :
(A) $\quad \alpha \mathbf{I}_{E}$
(B) $\quad(1-\alpha) I_{E}$
(C) $\quad(1-\alpha) I_{E}+\alpha$
(D) $\quad(1+\alpha) \mathrm{I}_{\mathrm{E}}$
10. The configuration having the highest input resistance, lowest output resistance and voltage gain less than unity is :
(A) CE
(B) CC
(C) CB
(D) Both CE and CB
11. The graph plotted between the drain current I_{D} and gate-source voltage V_{cs} for a given drain source voltage V_{Ds} of a MOSFET is called its :
(A) output characteristics
(B) input characteristics
(C) transfor characteristics
(D) load line

Electr.
3
P.T.O.
12. The process used in growing thin layers of the material on the semiconductor surface in fabrication of the semiconductor devices is known as :
(A) Lithography
(B) Metallization
(C) Diffusion
(D) Epitaxy
13. The operation of N-channel JFET involves flow of :
(A) electrons
(B) holes
(C) both electrons and holes
(D) doping impurity ions
14. The principle of superposition is a fundamental consequence of :
(A) non-linearity
(B) linearity
(C) reciprocity
(D) both non-linearity and reciprocity
15. The branch relationship of a two terminal resistive element is linear if it is :
(A) homogeneous
(B) additive
(C) homogeneous and additive
(D) none of the above
16. In model analysis of networks the choice of a reference node :
(A) alters the currents flowing through its branches
(B) effects the operation of the network
(C) alters the voltage across the elements
(D) affects the voltage of various nodes
17. The drain-source voltage at which the channel opening of a JFET reduces to zero is known as :
(A) cut-in voltage
(B) punch-through voltage
(C) pinch-off voltage
(D) breakdown voltage
18. The quality factor of any circuit is given by :
(A) 2π times the energy dissipated per cycle divided by the energy stored per cycle
(B) 2π times the energy stored per cycle divided by the energy dissipated per cycle
(C) 2π times the energy stored per cycle
(D) 2π times the energy dissipated per cycle

Electr.
P.T.O.
19. The normal binary code of Gray 11011 is :
(A) 11111
(B) 11110
(C) 11010
(D) 10010
20. At resonance frequency ω, the Q of a series LCR circuit is given by :
(A) $\omega \mathrm{L} / \mathrm{R}$
(B) $\omega \mathrm{C} / \mathrm{R}$
(C) $\mathrm{R} / \omega \mathrm{L}$
(D) $\quad \omega / \mathrm{RL}$
21. A device said to be active if its I-V characteristic lies in the :
(A) 1st quadrant
(B) 2nd and 4th quadrants
(C) 1st and 3rd quadrants
(D) 3rd quadrant
22. The threshold voltage of p-channel enhancement MOSFET is :
(A) zero
(B) positive
(C) negative
(D) independent of device geometry
23. $\frac{b}{s^{2}+a s+b}$ is a second order filter gain function that realizes the characteristics of a :
(A) band pass filter
(B) band reject filter
(C) high pass filter
(D) low pass filter
24. Identify the false statement from the following. The RC filters offer :
(A) increased circuit reliability because for all the processing steps can be automated
(B) improvement in performance because high quality components can be realized
(C) an increase in parasitic
(D) simpler design process
25. The frequeacy response curve of a first order filter rolls-off at a rate of :
(A) $10 \mathrm{db} /$ decade
(B) $20 \mathrm{db} /$ decade
(C) 10 db foctave
(D) 20 db /octave
26. The total number of sets of input conditions that will produce a high output from a three-input on gate is :
(A) 7
(B) 8
(C) 15
(D) 16

Electr.
P.T.O.
27. The logic expression $\overline{\overline{\mathbf{A}}+\mathbf{B}}+\overline{\overline{\mathbf{A}}+\overline{\mathbf{B}}}$ on simplification reduces to :
(A) $\mathrm{A}+\mathrm{B}$
(B) A
(C) AB
(D) B
28. A NAND gate with all inputs connected together will function as :
(A) OR gate
(B) AND gate
(C) NOT gate
(D) NOR gate
29. According to De Morgan's theorem :
(A) the complement of the product of two or more variables is equal to the sum of the variables
(B) the complement of the product of two or more variables is equal to the product of the variables
(C) the complement of the product of two or more variables is equal to the product of the complements of the variables
(D) the complement of the product of two or more variables is equal to the sum of the complements of the variables
30. When 2 's complement of a binary number is taken twice, the result will be :
(A) square of the original number
(B) double of the original number
(C) original number
(D) half of the original number
31. When binary number 1110101 is divided by the number 1001, the result is :
(A) 1001
(B) 1101
(C) 1010
(D) 0101
32. In Schottky TTL families a Schottky diode clamping between base and collector of the transistor is used to :
(A) prevent transistor saturation
(B) prevent transistor breakdown
(C) prevent short circuit failure
(D) increase the fan-in
33. Identify the false statement. Excess-3 code :
(A) is an unweighted code
(B) is used in representing a alphanumeric data
(C) is a self-complementing code
(D) uses only 10 of the 16 possible 4 -bit code groups
34. In logic circuits the positive logic is one in which :
(A) logic 0 and logic 1 are represented by negative and positive voltages respectively
(B) logic 0 and logic 1 are represented by zero and positive voltages respectively
(C) the voltage corresponding to logic 0 is lower than that corresponding to logic 1
(D) the voltage corresponding to logic 0 is higher than that corresponding to logic 1
35. With a NAND RS-latch a low R and low S produces :
(A) high output
(B) low output
(C) no change
(D) race condition
36. A multivibrator which continuously switches between two quasi-stable states without external excitation is known as :
(A) bistable multivibrator
(B) monostable multivibrator
(C) astable multivibrator
(D) flip-flop

Electr.
10
37. The logical value of the logical function $A+A$ is :
(A) 0
(B) 1
(C) A
(D) $\overline{\mathbf{A}}$
38. The minimum number of JK flip-flops required for designing a modulus-10 counter is :
(A) 4
(B) 6
(C) 8
(D) 10
39. Identify the correct statement from the following :
(A) Static RAM is volatile while dynamic RAM is non-volatile
(B) Static RAM is non-volatile while dynamic RAM is volatile
(C) Both static and dynamic RAM are volative
(D) Both static and dynamic RAM are non-volatile
40. Dynamic RAM :
(A) uses bipolar or MOS flip-flop
(B) uses MOSFETs and capacitors
(C) needs no refreshing of the data
(D) contains less memory cells than a static RAM on the same chip area

Electr.
11
P.T.O.
41. The 8085 A microprocessor has :
(A) 10 restart instructions
(B) 8 restart instructions
(C) 6 restart instructions
(D) 4 restart instructions
42. The execution of RST2 instruction vectors to location :
(A) $\quad 0000_{H}$
(B) $\quad 0008_{\mathrm{H}}$
(C) 0010_{H}
(D) $\quad 0018_{\mathrm{H}}$
43. The hardware restart of 8085A microprocessor which has the highest priority and when active branches the program to location 0024_{H} is :
(A) RST 7.5
(B) RST 6.5
(C) RST 5.5
(D) Trap
44. The decrease in gain of an $R C$ coupled amplifier at low frequency is mainly due to :
(A) junction capacitances of the transistor
(B) emitter resistance
(C) coupling capacitor
(D) voltage divider resistances used for self-biasing of the amplifier

Electr.
45. If R_{i} and R_{o} are the input and output resistances of an amplifier, its power gain in decibels equals its voltage gain in decibels when :
(A) $\quad \mathrm{R}_{\mathrm{i}}=2 \mathrm{R}_{0}$
(B) $\quad \mathbf{R}_{i}=R_{o}$
(C) $\mathrm{R}_{i}=\mathrm{R}_{\mathrm{o}} / 2$
(D) $\mathrm{R}_{i}=5 \mathrm{R}_{\mathrm{a}}$
46. A phasor is :
(A) a vector representing the magnitude and phase of an alternating quantity
(B) graph representing the frequecny and phase of an amplifier
(C) an instrument used for determination phase difference between two time varying quantities
(D) a colour tag for distinguishing between different phases of 3-phase supply
47. When the output flows for less than one-half cycle of the input signal, the amplifier is said to operate in :
(A) Class-A mode
(B) Class-AB mode
(C) Class-B mode
(D) Class-C mode

Electr.
48. If an amplifier has an overall current gain of 200 and input resistance of $20 \mathrm{k} \Omega$ with a load resistance of $10 \mathrm{k} \Omega$. The overall voltage gain of the amplifier is :
(A) 20 dB
(B) 40 dB
(C) 60 dB
(D) 80 dB
49. Two amplifiers having mid band voltage gains 20 dB and 40 dB are connected in cascade. The overall voltage gain of the cascade configuration will be :
(A) 800 dB
(B) 60 dB
(C) 30 dB
(D) 2 dB
50. A class-B push-pull amplifier suffers from :
(A) intermodulation distortion
(B) excess harmonic distortion
(C) cross-over distortion
(D) none of the above
51. An amplifier with a voltage gain of 1000 uses $1 / 100$ th of its output in negative feedback, the gain with feedback is :
(A) 90.9
(B) 80.9
(C) 20.9
(D) 10.9

Electr.
52. A program that accepts a high-level language program as input and generates a corresponding machine language program as output is called :
(A) Linker
(B) Loader
(C) Compiler
(D) Editor
53. Out of the following bridges which one is used for determination the capacitance :
(A) Schering bridge
(B) Wheatstone bridge
(C) Kelvin bridge
(D) Hay bridge
54. Which one of the following operators does not belong to unary operator group ?
(A) ++
(B) $<=$
(C) --
(D) size of
55. Identify the false statement from the following :
(A) an integer quantity cannot be added to or subtracted from a pointer variable
(B) a pointer variable can be assigned the address of an ordinary variable
(C) pointer variable can be assigned the value of another pointer variable
(D) a pointer variable can be assigned a null (zero) value
56. If $i=1$, then on execution of $++i$ statement the value of i will be :
(A) 1
(B) 2
(C) 3
(D) 4
57. Identify false statement. In C programming :
(A) a process directive may appear at any place in a source file
(B) only one processor directive can occur in a line
(C) a processor directive is terminated by a semicolon
(D) all processor directives begin with the sharp sign (\#)
58. In C programming when working with stream-oriented data file, one has to establish first a buffer area. This is accomplished by :
(A) fwrite
(B) fopen
(C) fclose
(D) FILE
59. Which of the following operators enjoys the highest precedence in C programming ?
(A) Unary operators
(B) Logical operators
(C) Relational operators
(D) Arithmetic operators
60. Idetnify the false statement from the following :
(A) A Union contains members whose individual data types may differ from one another
(B) The members that compose a union each are assigned its unique storage area within the computer's memory
(C) The members that compose a union all share the same storage area within the computer's memory
(D) A union can be member of a structure and a structure can be a member of a union.

Electr.

