ENTRANCE TEST-2023
 SCHOOL OF PHYSICAL \& MATHEMATICAL SCIENCE MATHEMATICS

Total Questions
60
Time Allowed
70 Minutes

Instructions for Candidates:

1. Write your Entrance Test Roll Number in the space provided at the top of this page of Question Booklet and fill up the necessary information in the spaces provided on the OMR Answer Sheet.
2. OMR Answer Sheet has an Original Copy and a Candidate's Copy glued beneath it at the top. While making entries in the Original Copy, candidate should ensure that the two copies are aligned properly so that the entries made in the Original Copy against each item are exactly copied in the Candidate's Copy.
3. All entries in the OMR Answer Sheet, including answers to questions, are to be recorded in the Original Copy only.
4. Choose the correct / most appropriate response for each question among the options A, B, C and D and darken the circle of the appropriate response completely. The incomplete darkened circle is not correctly read by the OMR Scanner and no complaint to this effect shall be entertained.
5. Use only blue/black ball point pen to darken the circle of correct/most appropriate response. In no case gel/ink pen or pencil should be used.
6. Do not darken more than one circle of options for any question. A question with more than one darkened response shall be considered wrong.
7. There will be 'Negative Marking' for wrong answers. Each wrong answer will lead to the deduction of 0.25 marks from the total score of the candidate.
8. Only those candidates who would obtain positive score in Entrance Test Examination shall be eligible for admission.
9. Do not make any stray mark on the OMR sheet.
10. Calculators and mobiles shall not be permitted inside the examination hall.
11. Rough work, if any, should be done on the blank sheets provided with the question booklet.
12. OMR Answer Sheet must be handled carefully and it should not be folded or mutilated in which case it will not be evaluated.
13. Ensure that your OMR Answer Sheet has been signed by the Invigilator and the candidate himself/ herself.
14. At the end of the examination, hand over the OMR Answer Sheet to the invigilator who will first tear off the original OMR sheet in presence of the Candidate and hand over the Candidate's Copy to the candidate.
15. Let $A=\{x \in R: x<1\}$ and $B=\{x \in R:-1<x \leq 3\}$. Then :
(A) Both A and B are bounded
(B) A is bounded above by 1 and its supremum $1 \in \mathrm{~A}$
(C) The supremum of A belongs to A and the infimum of B belongs to B
(D) The supremum of A does not belong to A and the supremum of B belongs to B
16. Which of the following is true ?
(A) The set of the real numbers is the neighbourhood of each of its points.
(B) The set Q of rational numbers is the neighbourhood of each of its points.
(C) The closed interval [a, b] is a neighbourhood of its end points a and b
(D) None of the above
17. What is the set of limit points for the set $S=\left\{-1,1,-\frac{1}{2}, \frac{3}{2},-\frac{2}{3}, \frac{4}{3}, \ldots ..\right\}$
(A) $\left\{-\frac{1}{2}, \frac{3}{2}\right\}$
(B) $\{-1,1\}$
(C) $\{0,-1\}$
(D) None of the above
18. Which of the following is not true ?
(A) The set of all integers if countable.
(B) The set of all ordered pairs of integers is countable.
(C) The set of all real numbers is uncountable.
(D) The set of all rational numbers is uncountable.
19. What is the limit point of the sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$, where $a_{n}=\frac{(-1)^{n-1}}{n!}, n \in N$.
(A) $-\frac{1}{2}$
(B) -1
(C) 0
(D) None of the above
20. If $a_{n}=n^{2}$ and $b_{n}=-n^{2}, n \in N$, then
(A) the sequence $\left(a_{n}+b_{n}\right)$ diverges
(B) the sequence $\left(a_{n}-b_{n}\right)$ converges
(C) the sequence $\left\{\frac{a_{n}}{b_{n}}\right\}$ diverges
(D) the sequence $\left\{\frac{a_{n}}{b_{n}}\right\}$ converges
21. $\lim _{n \rightarrow \infty}\left(\frac{2 n-3}{n+1}\right)$ equals
(A) 0
(B) 1
(C) 2
(D) -3
22. Which of the following is not true ?
(A) If a sequence is convergent, it converges to a unique limit.
(B) Every convergent sequence is bounded.
(C) Every bounded sequence is convergent.
(D) Every bounded monotonic sequence is convergent.
23. If the series $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow 0} a_{n}$ equals :
(A) 0
(B) 1
(C) ∞
(D) None of the above
24. For any fixed value of n, the series $\sum_{n=1}^{\infty} \frac{\sin n x}{n^{2}}$ is :
(A) absolutely convergent
(B) divergent
(C) oscillates finitely
(D) oscillates infinitely
25. If $\sum a_{n}$ is a positive term series such that $\lim _{\mathrm{n} \rightarrow \infty}\left(\mathrm{a}_{\mathrm{n}}\right)^{\frac{1}{n}}=l$, then the series is convergent if :
(A) $l<1$
(B) $1<l<3$
(C) $l \geq 3$
(D) None of the above
26. The series $A=\sum_{n=1}^{\infty} a_{n}$, where $a_{n}=\frac{(-1)^{n+1}}{\sqrt{n}}$. Then
(A) A is convergent
(B) A is divergent
(C) $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ is monotonically increasing sequence
(D) the series $\left|a_{n}\right|$ is convergent
27. The radius of convergence and the exact interval of convergence of the power series $\sum \frac{(n+1) x^{n}}{(n+2)(n+3)}$ is :
(A) $\mathrm{R}=0,[0,1]$
(B) $\mathrm{R}=1,[-1,1]$
(C) $\mathrm{R}=\infty$
(D) None of the above
28. Let $\left\{f_{n}\right\}$ be a sequence of functions such that $\lim _{n \rightarrow \infty} f_{n}=f(x), x \in[a, b]$, and let
$M_{n}=\sup _{x \in[a, b]}\left|f_{n}(x)-f(x)\right|$. Then $f_{n} \rightarrow f$ uniformly on $[\mathrm{a}, \mathrm{b}]$ if and only if :
(A) $\mathrm{M}_{\mathrm{n}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$
(B) $\mathrm{M}_{\mathrm{n}} \rightarrow \infty$ as $\mathrm{n} \rightarrow \infty$
(C) $\mathrm{M}_{\mathrm{n}} \rightarrow 1$ as $\mathrm{n} \rightarrow \infty$
(D) None of the above
29. Let $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ be a sequence, where $\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\frac{\mathrm{nx}}{1+\mathrm{n}^{2} \mathrm{x}^{2}}$, then
(A) $\mathrm{M}_{\mathrm{n}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$
(B) $\mathrm{M}_{\mathrm{n}} \rightarrow \frac{1}{2}$ as $\mathrm{n} \rightarrow \infty$
(C) $\mathrm{M}_{\mathrm{n}} \rightarrow 1$ as $\mathrm{n} \rightarrow \infty$
(D) None of the above
30. What is the identity element of the group of all integers Z with operation $\mathrm{aob}=\mathrm{a}+\mathrm{b}+1$, $\mathrm{a}, \mathrm{b} \in \mathrm{Z}$.
(A) 0
(B) 1
(C) -1
(D) None of the above
31. The set of all $n \times n$ non-singular matrices 21 . Let $G=\{a\}$ be a cyclic group of order six
having their elements as rational numbers is :
(A) an infinite abelian group wrt matrix multiplication
(B) an abelian group wrt matrix addition
(C) an infinite non-abelian group wrt matrix multiplication
(D) None of the above
32. If $\alpha=\left(\begin{array}{ll}1 & 2\end{array} 345\right)$ and $\beta=\left(\begin{array}{ll}2 & 3\end{array}\right)(45)$ be two permutations of five symbols $1,2,3,4,5$ then $\alpha \beta$ equals :
(A) ($\left.\begin{array}{ll}1 & 3\end{array}\right)$
(B) $\left(\begin{array}{lll}2 & 4 & 5\end{array}\right)$
(C) $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$
(D) None of the above
33. Which of the following is the set of generators of the cyclic group $G=(\{0,1,2,3,4,5\},+6)$ are :
(A) $\{1,2\}$
(B) $\{1,5\}$
(C) $\{2,5\}$
(D) None of the above
34. Which of the following is true ?
(A) The symmetric group P_{3} of permutations of degree three is non-abelian, while its subgroup A_{3} is abelian
(B) The symmetric group P_{4} of permutations of degree four is abelian, while its subgroup A_{4} is also abelian
(C) The symmetric group P_{3} of permutations of degree three is non-abelian, while its subgroup A_{3} is also non-abelian
(D) None of the above
and H be the subgroup generated by a^{2}. Then the order of the quotient group $(\mathrm{G} / \mathrm{H})$ is :
(A) 1
(B) 2
(C) 3
(D) 4
35. Which of the following is true for the group of order 45 ?
(A) G has a normal subgroup of order 9
(B) G has an element of order 9
(C) G is a non-abelian group
(D) G has no proper subgroup of order 5
36. What is the order of the element $\frac{2}{3}+\mathrm{z}$ in the quotient group (G/Z) of the additive group of rationals ?
(A) 2
(B) 3
(C) 5
(D) 6
37. If the quotient group (G / Z), where Z is the centre of the group G, then
(A) G is abelian
(B) G is cyclic
(C) G is non-abelian
(D) None of the above
38. The set $\mathrm{F}=\{0,1,2,3,4,5,6\}$ under addition 29. What is the locus of the extremity of the polar and multiplication modulo 7 forms : subnormal of the curve $r=f(\theta)$?
(A) Commutative ring with zero divisors
(B) Non-commutative ring with unity
(C) Field
(D) None of the above
(B) $\theta-\frac{\pi}{2}$
39. Let $\mathrm{R}[\mathrm{x}]$ be the ring of polynomials of a ring R, then which of the following statements is/are true ?
(i) R is an integral domain if and only if $R[x]$ is an integral domain.
(ii) If R is an integral domain, then $\operatorname{deg}[f(x) g(x)]=\operatorname{deg} f(x)+\operatorname{deg} g(x)$, where $f(x), g(x) \in R[x]$.
(A) (i) only
(B) (ii) only
(C) Neither (i) nor (ii)
(D) Both (i) and (ii)
(C) $r=f^{\prime}\left(\theta-\frac{\pi}{2}\right)$
(D) None of the above
40. What is the angle of intersection of the curves $\mathrm{r}=\mathrm{a}(1+\cos \theta), \mathrm{r}=\mathrm{b}(1-\cos \theta)$?
(A) $\frac{\pi}{2}$
(B) 0
(C) -1
(D) π
41. What is the number of proper ideals in a field F ?
(A) At least one
(B) Zero
(C) Exactly one
(D) None of the above
42. $\lim _{n \rightarrow \infty}\left(a^{\frac{1}{n}}-1\right) n$ equals :
(A) $\log a$
(B) 1
(C) ∞
(D) None of the above
43. What is the radius of curvature at any point of the curve $\mathrm{r}=\mathrm{ae}^{\theta \cot \alpha}$?
(A) $r \operatorname{cosec} \alpha$
(B) $\mathrm{r} \cot \alpha$
(C) $\mathrm{r} \sec \alpha$
(D) None of the above
44. The asymptotes of the curve $\mathrm{r} \theta=\mathrm{a}$ are :
(A) $\mathrm{r} \sin \theta=\mathrm{a}$
(B) $\mathrm{r} \cos \theta=\mathrm{a}$
(C) $\cos \theta=r^{2}$
(D) None of the above
45. If $U=\sqrt{x^{2}-y^{2}} \sin ^{-1} \frac{y}{x}$, then $x \frac{\partial U}{\partial x}+y \frac{\partial U}{\partial y}$ equals :
(A) 2 U
(B) 0
(C) U
(D) None of the above
46. If $\mathrm{Z}=\mathrm{x}^{\mathrm{y}}$, then $\frac{\partial \mathrm{Z}}{\partial \mathrm{x}}$ equals:
(A) $\mathrm{x}^{\mathrm{y}} \log \mathrm{x}$
(B) $\mathrm{y}^{\mathrm{y}-1}$
(C) $y e^{x}$
(D) None of the above
47. What is the nth-derivative of $3^{2 x}$?
(A) $y_{n}=3^{2 x}(\log 3)^{n}$
(B) $y_{n}=2\left(3^{2 x}\right)^{n}(\log 3)$
(C) $y_{n}=2^{n} 3^{2 x}(\log 3)^{n}$
(D) None of the above
48. $\frac{\mathrm{d}}{\mathrm{dx}}(\sin \sqrt{\mathrm{x}})$ equals :
(A) $\cos \sqrt{\mathrm{x}}$
(B) $\frac{1}{2 \sqrt{\mathrm{x}}} \cos \sqrt{\mathrm{x}}$
(C) $\frac{\sqrt{\mathrm{x}}}{2} \cos \sqrt{\mathrm{x}}$
(D) None of the above
49. Let the functions $f(x)$ and $g(x)$ be defined by:
$\mathrm{f}(\mathrm{x})= \begin{cases}1, & \text { if } \mathrm{x} \geq 0 \\ 0, & \text { if } \mathrm{x}<0\end{cases}$
$g(x)= \begin{cases}0, & \text { if } x \geq 0 \\ 1, & \text { if } x<0\end{cases}$
Then
(A) $f(x)$ is continuous at $x=0$
(B) $g(x)$ is continuous at $x=0$
(C) $f(x)+g(x)$ is continuous at $x=0$
(D) $f(x) g(x)$ is discontinuous at $x=0$
50. If $x=a \cos \theta$ and $y=b \sin \theta$, then the value of $\frac{d^{2} y}{d x^{2}}$ at $\theta=\frac{\pi}{2}$ is :
(A) $-\frac{b}{a^{2}}$
(B) ab
(C) $-\frac{b}{a}$
(D) None of the above
51. What is the value of the function $f(x)=x^{2} e^{x}$?
(A) $4 \mathrm{e}^{-2}$
(B) 0
(C) -4
(D) None of the above
52. Rolle's theorem cannot be applied to the function $f(x)=|x|$ in $[-1,1]$ because :
(A) the function is discontinuous at $\mathrm{x}=0$
(B) the function is not derivable at $\mathrm{x}=0$
(C) the function is discontinuous at $\mathrm{x}=\frac{1}{2}$
(D) the function is not derivable at $\mathrm{x}=-\frac{1}{2}$
53. The coefficient of x in the Maclaurin's series of $f(x)=a^{x}$ is :
(A) 1
(B) $\log a$
(C) a
(D) $(\log a)^{2}$
54. $\int \frac{1}{x-x^{3}} d x$ equals :
(A) $\log \sqrt{1-x^{2}}$
(B) $\log \mathrm{x}-\log \sqrt{1-\mathrm{x}^{2}}$
(C) $\log x-\log \left(1-x^{2}\right)$
(D) $\log x+\log \sqrt{1-x^{2}}$
55. $\int_{1}^{2} \log x d x$ equals :
(A) $\log 4-1$
(B) $2 \log 2$
(C) $2 \log 2+1$
(D) None of the above
56. The reduction formula of $I_{n}=\int \tan ^{n} x d x$ is
(A) $\mathrm{I}_{\mathrm{n}}=\frac{\tan ^{\mathrm{n}-1} \mathrm{x}}{\mathrm{n}-1}-\mathrm{I}_{\mathrm{n}-2}$
(B) $\mathrm{I}_{\mathrm{n}}=\frac{\tan ^{\mathrm{n}-2} \mathrm{x}}{\mathrm{n}-2}-\mathrm{I}_{\mathrm{n}-1}$
(C) $\mathrm{I}_{\mathrm{n}}=\frac{2 \tan ^{\mathrm{n}} \mathrm{x}}{\mathrm{n}}-\mathrm{I}_{\mathrm{n}+3}$
(D) None of the above
57. For odd $n, \int_{0}^{\pi} \frac{\sin n x}{\sin x} d x$ equals :
(A) 0
(B) $-\pi$
(C) π
(D) None of the above
58. What is the general solution of the differential equation

$$
\frac{d y}{d x}=e^{x-y}+x^{2} e^{-y} ?
$$

(A) $y=\frac{x^{3}}{3}+e^{x}+c$
(B) $\mathrm{e}^{\mathrm{y}}=\frac{\mathrm{x}^{3}}{3}+\mathrm{e}^{\mathrm{x}}+$ c
(C) $y=e^{x}+e^{-y}+c$
(D) None of the above
47. What is the particular integral of the differential equation

$$
\left(D^{2}-3 D+2\right) y=e^{x}+e^{2 x} ?
$$

(A) $\frac{e^{x}}{5}+\frac{x e^{2 x}}{6}$
(B) $-x e^{x}+\frac{x e^{2 x}}{4}+c$
(C) $x e^{2 x}-x e^{x}$
(D) None of the above
48. What is the complementary function of the 52 . For a first order non-linear differential equation differential equation

$$
\left(\mathrm{D}^{4}-\mathrm{D}^{2}\right) \mathrm{y}=2 ?
$$

(A) $\mathrm{c}_{1} \mathrm{e}^{\mathrm{x}}+\mathrm{c}_{2} \mathrm{e}^{-\mathrm{x}}$
(B) $\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}+\mathrm{c}_{3} \mathrm{e}^{\mathrm{x}}$
(C) $\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}+\mathrm{c}_{3} \mathrm{e}^{\mathrm{x}}+\mathrm{c}_{4} \mathrm{e}^{-\mathrm{x}}$
(D) None of the above
49. What is the general solution of the differential equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+4 y=0 \quad ?
$$

(A) $y=\left(c_{1}+c_{2} \log x\right) x^{2}$ $f\left(x, y, \frac{d y}{d x}\right)=0$, which of the following statements is/are true ?
(i) Its general solution must contain only one arbitrary constant.
(ii) Its singular solution can be obtained by substituting particular values of the arbitrary constant in its general solution.
(iii) Its singular solution is an envelope of its general solution which also satisfies the equation.
(A) (i), (ii) and (iii)
(B) (i) and (ii)
(C) (i) and (iii)
(D) (ii) and (iii)
53. Which of the following is a non-linear differential equation?
(A) $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}+3 \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{e}^{\mathrm{x}}$
(B) $\frac{d y}{d x}+3 y=e^{x}$
(C) $\left(\frac{d y}{d x}\right)^{2}+5 y=0$
(D) None of the above
51. What is the general solution of the differential equation $(p x-y)^{2}=p^{2}+m^{2}$, where $p=\frac{d y}{d x}$.
(A) $\mathrm{y}=\mathrm{cx} \pm \sqrt{\mathrm{m}^{2}+\mathrm{c}^{2}}$
54. Let $\mathrm{I}=\int_{-1}^{1} \mathrm{P}_{\mathrm{m}}(\mathrm{x}) \mathrm{P}_{\mathrm{n}}(\mathrm{x}) \mathrm{dx}$, where $\mathrm{P}_{\mathrm{m}}(\mathrm{x})$ and $\mathrm{P}_{\mathrm{n}}(\mathrm{x})$ are Legendre polynomials, then
(A) $I=0$, if $m \neq n$
(B) $\mathrm{I}=0$, if $\mathrm{m}=\mathrm{n}$
(C) $\mathrm{I}=\frac{2}{2 \mathrm{n}+1}$, if $\mathrm{m} \neq \mathrm{n}$
(D) $I=\frac{2}{2 n+1}$, if $m>n$
55. For $\mathrm{n}^{\text {th }}$ Legendre polynomial $\mathrm{C}_{\mathrm{n}}\left[\frac{\mathrm{d}^{\mathrm{n}}\left(\mathrm{x}^{2}-1\right)^{\mathrm{n}}}{\mathrm{dx}^{\mathrm{n}}}\right]$, the value of C_{n} is :
(A) $\frac{1}{n!2^{n}}$
(B) $\frac{\mathrm{n}!}{2^{\mathrm{n}}}$
(C) $n!2^{n}$
(D) None of the above
56. Which of the following is the Bessel's equation?
(A) $\mathrm{z}^{2}\left(\frac{\mathrm{~d}^{2} \mathrm{w}}{\mathrm{dz}^{2}}\right)+\mathrm{z}\left(\frac{\mathrm{dw}}{\mathrm{dz}}\right)+\left(\mathrm{z}^{2}+\mathrm{n}^{2}\right) \mathrm{w}=0$
(B) $\mathrm{z}^{2}\left(\frac{\mathrm{~d}^{2} \mathrm{w}}{\mathrm{dz}^{2}}\right)-\mathrm{z}\left(\frac{\mathrm{dw}}{\mathrm{dz}}\right)+\left(\mathrm{z}^{2}-\mathrm{n}^{2}\right) \mathrm{w}=0$
(C) $z^{2}\left(\frac{d^{2} w}{d z^{2}}\right)+\mathrm{z}\left(\frac{\mathrm{dw}}{\mathrm{dz}}\right)+\left(\mathrm{z}^{2}-\mathrm{n}^{2}\right) \mathrm{w}=0$
(D) None of the above
57. What is the Wronskian of x and xe^{2} ?
(A) 0
(B) $x-x^{2} e^{x}$
(C) $x^{2} e^{x}$
(D) None of the above
58. The partial differential equation obtained from $z=f(x)+e^{y} g(x)$ by eliminating the arbitrary functions is :
(A) $\mathrm{p}=\mathrm{q}$
(B) $\mathrm{t}=\mathrm{q}$
(C) $\mathrm{r}=\mathrm{s}$
(D) None of the above
59. What is the general solution of the partial differential equation $p-2 q=3 x^{2} \sin (y+2 x)$?
(A) $\mathrm{x}^{3} \sin (\mathrm{y}+2 \mathrm{x})-\mathrm{z}=\phi(\mathrm{y}+2 \mathrm{x})$
(B) $\sin (y+2 x)=z$
(C) $\phi(y-2 x)=\cos (y+2 x)$
(D) None of the above
60. The partial differential equation

$$
\begin{aligned}
x y \frac{\partial^{2} u}{\partial x^{2}}-\left(x^{2}-y^{2}\right)\left(\frac{\partial^{2} u}{\partial x \partial y}\right) & -x y\left(\frac{\partial^{2} u}{\partial y^{2}}\right)+y \frac{\partial u}{\partial x} \\
& -x \frac{\partial u}{\partial y}=2\left(x^{2}-y^{2}\right)
\end{aligned}
$$

(A) is parabolic at all points
(B) is hyperbolic at all points
(C) is elliptic at all points
(D) None of the above

ROUGH WORK

ROUGH WORK
\qquad

ENTRANCE TEST-2022

SCHOOL OF PHYSICAL \& MATHEMATICAL SCIENCES MATHEMATICS

Total Questions : 60
Time Allowed : 70 Minutes

Instructions for Candidates :

1. Write your Entrance Test Roll Number in the space provided at the top of this page of Question Booklet and fill up the necessary information in the spaces provided on the OMR Answer Sheet.
2. OMR Answer Sheet has an Original Copy and a Candidate's Copy glued beneath it at the top. While making entries in the Original Copy, candidate should ensure that the two copies are aligned properly so that the entries made in the Original Copy against each item are exactly copied in the Candidate's Copy.
3. All entries in the OMR Answer Sheet, including answers to questions, are to be recorded in the Original Copy only.
4. Choose the correct / most appropriate response for each question among the options A, B, C and D and darken the circle of the appropriate response completely. The incomplete darkened circle is not correctly read by the OMR Scanner and no complaint to this effect shall be entertained.
5. Use only blue/black ball point pen to darken the circle of correct/most appropriate response. In no case gel/ink pen or pencil should be used.
6. Do not darken more than one circle of options for any question. A question with more than one darkened response shall be considered wrong.
7. There will be 'Negative Marking' for wrong answers. Each wrong answer will lead to the deduction of 0.25 marks from the total score of the candidate.
8. Only those candidates who would obtain positive score in Entrance Test Examination shall be eligible for admission.
9. Do not make any stray mark on the OMR sheet.
10. Calculators and mobiles shall not be permitted inside the examination hall.
11. Rough work, if any, should be done on the blank sheets provided with the question booklet.
12. OMR Answer Sheet must be handled carefully and it should not be folded or mutilated in which case it will not be evaluated.
13. Ensure that your OMR Answer Sheet has been signed by the Invigilator and the candidate himself/
herself. herself.
14. At the end of the examination, hand over, the OMR Answer Sheet to the invigilator who will first tear off the original OMR sheet in presence of the Candidate and hand over the Candidate's Copy to the candidate.
15. $\lim _{x \rightarrow 0} \frac{e^{\sin x}-1}{x}$ equals :
(A) 0
(B) -1
(C) e
(D) 1
16. Let $f(x)=\left\{\begin{aligned} 1, & x \geq 0 \\ -1, & x<0 .\end{aligned}\right.$

$$
g(x)=\left\{\begin{aligned}
-1, & x \geq 0 \\
1, & x<0
\end{aligned}\right.
$$

Then which of the following is true at $\mathrm{x}=0$?
(A) f and g are continuous
(B) fg is discontinuous
(C) $\mathrm{f}+\mathrm{g}$ is continuous
(D) None of the above .
3. If $z=x^{4} y^{2} \sin ^{-1}\left(\frac{y}{x}\right)$, then $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}$ equals :
(A) 6 z
(B) $3 z$
(C) 9 z
(D) 6
4. Let $z=x^{2}-3 y^{2}+20$, where $x=2$ cost and $y=2 \sin t$. At $t=\frac{\pi}{4}, \frac{d z}{d t}$ equals :
(A) 16
(B) -16
(C) -8
(D) 8
5. What is the radius of curvature of the curve $\mathrm{s}=\mathrm{a} \sec \psi \tan \psi+\mathrm{a} \log (\sec \psi+\tan \psi)$ at the point (s, ψ) ?
(A) $2 \mathrm{a} \sec ^{3} \psi$
(B) $\mathrm{a} \sec ^{3} \psi$
(C) $2 \sec ^{3} \psi$
(D) None of the above
6. What is the angle between the radius vector and the tangent to the curve $\mathrm{r}=\mathrm{a}(1+\sin \theta)$ at $\theta=\frac{\pi}{6}$?
(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{2}$
(C) $\frac{\pi}{4}$
(D) None of the above
7. What is the pedal equation of the curve $\mathrm{a}^{2}=\mathrm{r}^{2} \cos 2 \theta$?
(A) $\mathrm{a}^{2}=\mathrm{rp}$
(B) $\mathrm{a}=\mathrm{rp}$
(C) $\mathrm{a}=\mathrm{r}+\mathrm{p}$
(D) None of the above
8. What is the number of asymptotes of the curve $\mathrm{r}=\frac{\mathrm{a}}{1-\cos \theta}$?
(A) 2
(B) 1
(C) 0
(D) None of the above
9. On which of the following functions Rolle's theorem cannot be applied ?
(A) $f(x)=\sin x$ in $[0, \pi]$
(B) $f(x)=\sqrt{4-x^{2}}$ in $[-2,2]$
(C) $f(x)=|x|$ in $[-1,1]$
(D) $f(x)=x^{2}$ in $[-1,1]$
10. In which of the following intervals, all the conditions of the Lagrange's mean value theorem is satisfied ?
(A) $[2,4]$
(B) $[1,3]$
(C) $[-2,2]$
(D) None of the above
11. $\lim _{x \rightarrow 0}\left(\frac{\ln (1+x)}{\sin x}\right)$ equals :
(A) -1
(B) 1
(C) 0
(D) None of the above
12. What is the maximum value of the function $f(x)=2 x^{3}-9 x^{2}-24 x-20 ?$
(A) 1
(B) 7
(C) -7
(D) None of the above
13. $\int \frac{\mathrm{dx}}{\sqrt{2 \mathrm{x}-\mathrm{x}^{2}}}$ equals :
(A) $\cos ^{-1}(x-1)$
(B) $\sin ^{-1}(x-1)$
(C) $\sin (x-1)$
(D) $\cos (x-1)$
14. $\int \frac{e^{x}}{\left(e^{x}-1\right)\left(e^{x}+2\right)} d x$ equals :
(A) $\ln \left|\frac{\mathrm{e}^{\mathrm{x}}+1}{\mathrm{e}^{\mathrm{x}}+2}\right|^{\frac{1}{3}}$
(B) $\ln \left|\frac{e^{x}-1}{e^{x}+2}\right|^{\frac{1}{3}}$
(C) $\ln \left|\frac{\mathrm{e}^{x}-1}{\mathrm{e}^{x}-2}\right|^{\frac{1}{3}}$
(D) None of the above
15. $\frac{d}{d x} \int_{0}^{\cos x}\left(t^{4}+6\right) d t$ equals :
(A) $-x\left(\cos ^{4} x+6\right) \sin x$
(B) $-x\left(\cos ^{4} x+6\right) \cos x$
(C) $-\left(\cos ^{4} x+6\right) \cos x$
(D) None of the above
16. The differential equation $\left(a y^{2}+x+x^{8}\right) d x$ $+\left(y^{8}-y+b x y\right) d y=0$ is exact if :
(A) $\mathrm{b}=\mathrm{a}$
(B) $\mathrm{a}=1$ and $\mathrm{b}=3$
(C) $\mathrm{a}=3$ and $\mathrm{b}=1$
(D) $\mathrm{b}=2 \mathrm{a}$
17. What is the integrating factor for the differential 20 . What is the general solution of the different equation

$$
(x+1) \frac{d y}{d x}-y=e^{3 x}(x+1)^{2} ?
$$

(A) $\frac{1}{1+\mathrm{x}^{2}}$ equation

$$
\left(\frac{d y}{d x}\right)^{2}-7\left(\frac{d y}{d x}\right)+12=0 ?
$$

(A) $(y-3 x-c)(y-4 x-c)=0$
(B) $(y+3 x-c)(y-4 x-c)=0$
(C) $(y-3 x-c)(y+4 x-c)=0$
(B) $\frac{1}{1+x}$
(D) None of the above
21. What is the general solution of the differen equation $p=\log (p x-y)$, where $p=\frac{d y}{d x}$
(A) $y=c x-e^{x}$
(B) $y=c x-e^{c}$
(C) $y=c-e^{x}$
(D) None of the above
(A) $\frac{1}{18} \mathrm{x}^{3} \mathrm{e}^{\mathrm{x}}-\frac{1}{2}$
(B) $18 x^{3} e^{x}-2$
(C) $\frac{1}{18} \mathrm{x}^{2} \mathrm{e}^{\mathrm{x}}-\frac{1}{2}$
(D) None of the above
22. If α is the degree and β is the order of differential equation

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{\frac{1}{3}}=\left(y+\frac{d y}{d x}\right)^{\frac{1}{2}}
$$

Then $3 \alpha+5 \beta$ equals :
(B) 18
(C) 28
(D) None of the above
(A) $c_{1} \cos x+c_{2} \sin x-\frac{1}{3} \cos 3 x+\frac{1}{2} e^{-x}$
(B) $\left(c_{1}+c_{2} x\right) e^{x}+\frac{1}{3} \cos x+\frac{1}{2} e^{-x}$
(C) $c_{1} \cos x+c_{2} \sin x-\frac{1}{3} \cos 2 x+\frac{1}{2} e^{-x}$.
(D) None of the above
23. The differential equation $(y-p x)^{2}=a^{2}(1+$ where $\mathrm{p}=\frac{\mathrm{dy}}{\mathrm{dx}}$, is :
(A) Linear equation
(B) Lagrange's equation
(C) Clairaut's equation
(D) None of the above
24. What is the expansion of x^{2} in terms of the 27 . What is the partial differential equation obtained

Legendre polynomial?

(A) $\frac{1}{2}\left[2 \mathrm{p}_{2}(\mathrm{x})+\mathrm{p}_{0}(\mathrm{x})\right]$ from $z=f\left(x^{2}-y^{2}\right)$ by eliminating the arbitrary function?
(A) $y \frac{\partial z}{\partial x}=x \frac{\partial z}{\partial y}$
(B) $\frac{1}{3}\left[2 \mathrm{p}_{2}(\mathrm{x})+3 \mathrm{p}_{0}(\mathrm{x})\right]$
(B) $x \frac{\partial z}{\partial x}=y \frac{\partial z}{\partial y}$
(C) $\frac{1}{3}\left[2 \mathrm{p}_{2}(\mathrm{x})+\mathrm{p}_{0}(\mathrm{x})\right]$
(C) $y \frac{\partial z}{\partial x}=z \frac{\partial z}{\partial y}$
(D) None of the above
(D) None of the above
25. If $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$ is the Bessel function, then $\mathrm{J}_{-\frac{1}{2}}(\mathrm{x})$ equals: 28. What is the general solution of the partial
(A) $\frac{2}{\pi x}$ differential equation $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=\sin x$?
(A) $\phi(x-y, z+\cos x)=0$
(B) $\phi(x y, z+\cos x)=0$
(B) $\frac{\pi x}{2}$
(C) $\phi(x-y, z+\sin x)=0$
(D) $\phi(x-y, z \cos x)=0$
(C) $\sqrt{\frac{2}{\pi x}} \sin x$
(D) None of the above
26. What is the general solution of the Bessel's differential equation

$$
x^{2}\left(\frac{d^{2} y}{d x^{2}}\right)+x\left(\frac{d y}{d x}\right)+\left(x^{2}-\frac{9}{16}\right) y=0
$$

(A) $\mathrm{y}=\mathrm{AJ}_{\frac{9}{16}}(\mathrm{x})+\mathrm{BJ}_{-\frac{9}{16}}(\mathrm{x})$
(B) $\mathrm{y}=\mathrm{AJ}_{\frac{3}{4}}(\mathrm{x})+\mathrm{BJ}{ }_{-\frac{3}{4}}(\mathrm{x})$
(C) $y=\mathrm{AJ}_{\frac{4}{3}}(x)+B J_{-\frac{4}{3}}(x)$
(D) None of the above
29. What is the complete integral of the partial differential equation $z=p x+q y-2 \sqrt{p q}$.
(A) $z=(a x+b y)^{2}-2 \sqrt{a b}$
(B) $\mathrm{z}=\mathrm{axy}-2 \sqrt{\mathrm{ab}}$
(C) $z=a x+b y-2 \sqrt{a b}$
(D) None of the above
30. At all points, the partial differential equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+4\left(\frac{\partial^{2} u}{\partial x \partial y}\right)+4\left(\frac{\partial^{2} u}{\partial y^{2}}\right)=0
$$

(A) is hyperbolic
(B) is elliptic
(C) is parabolic
(D) None of the above
31. Which of the following statements is/are true ? 35. What is the number of limit points of the seques
(1) The set $\left\{-1,-\frac{1}{2},-\frac{1}{3},-\frac{1}{4}, \ldots.\right\}$ is bounded. $\{1,2,1,4,1,6,1, \ldots$.$\} ?$
(A) one
(B) more than one but finite
(2) The set $\left\{\frac{1}{3}, \frac{4}{5}, \frac{9}{7}, \frac{16}{9}, \ldots\right\}$ is bounded.
(C) infinite
(D) 0
(A) Both (1) and (2) are true
(B) Only (1) is true
(C) Only (2) is true
(D) Neither (1) is true nor (2) is true
32. Which of the following is order complete ?
(A) set of rational numbers
(B) set of irrational numbers
(C) set of integers
(D) set of real numbers
33. What is number of limit points in a finite set ?
(A) 1
(B) 2
(C) infinite
(D) None of the above
34. Which of the following is uncountable?
(A) set of all integers
(B) set P_{n} of all polynomial functions with integer coefficients
(C) set $\{1,4,9,16, \ldots .$.
(D) set of all real numbers
36. The sequence $\left\{1+\frac{1}{n}\right\}$
(A) converges to zero
(B) converges to 1
(C) converges to 2
(D) diverges to infinity
37. If $\lim _{n \rightarrow \infty} a_{n}=9$, then $\lim _{n \rightarrow \infty}\left(\frac{\left(a_{1}+a_{2}+\ldots .+a_{1}\right.}{n}\right.$ equals :
(A) 0
(B) 3
(C) 9
(D) None of the above
38. Which of the following is NOT true ?
(A) A necessary and sufficient condition the convergence of a monotonic seque is that it is bounded.
(B) Every monotonic decreasing sequence wl is bounded below diverges.
(C) Every monotonic increasing sequence wl is not bounded above diverges.
(D) A monotonic increasing bounded $a b$ sequence converges.
39. The series $\frac{1.2}{3^{2} \cdot 4^{2}}+\frac{3.4}{5^{2} \cdot 6^{2}}+\frac{5 \cdot 6}{7^{2} \cdot 8^{2}}+\ldots .$.
(A) oscillates finitely
(B) oscillates infinitely
(C) is divergent
(D) is convergent
40. Which of the following statements is true ?
(1) the infinite series $\sum \frac{1}{n^{1+\frac{1}{n}}}$ is divergent
(2) the infinite series $\sum \frac{1}{\mathrm{n}^{2+\frac{1}{n}}}$ is convergent
(A) Both (1) and (2) are true
(B) Only (1) is true
(C) Only (2) is true
(D) Neither (1) is true nor (2) is true
41. Which of the following statements is true ?
(1) The infinite series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$ is conditionally convergent
(2) The infinite series $1-\frac{1}{2^{3}}+\frac{1}{3^{3}}-\frac{1}{4^{3}}+\ldots$ is absolutely convergent
(A) Both (1) and (2) are true
(B) Only (1) is true
(C) Only (2) is true
(D) Neither (1) is true nor (2) is true
42. If $\sum \mathrm{U}_{\mathrm{n}}$ is a positive term series such that $\lim _{n \rightarrow \infty}\left(U_{n}\right)^{\frac{1}{n}}=t$, then the series converges if
(A) $t=1$
(B) $\mathrm{t}>1$
(C) $\mathrm{t}<1$
(D) $t=2$
43. Which of the following statements is/are true for the sequence $\mathrm{F}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}^{\mathrm{n}}$ on $[0,1]$?
(1) Uniformly convergent
(2) Pointwise convergent
(A) Both (1) and (2)
(B) Only (1)
(C) Only (2)
(D) Neither (1) nor (2)
44. If a sequence $\left\{f_{n}\right\}$ converges uniformly in $[a, b]$ and x_{0} is a point of $[a, b]$ such that $\lim _{x \rightarrow x_{n}} f_{n}(x)=a_{n}$, $\mathrm{n}=1,2,3, \ldots \ldots$. , then :
(A) $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ diverges
(B) $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ converges
(C) $\lim _{x \rightarrow x_{0}} f(x) \neq \lim _{n \rightarrow \infty} a_{n}$
(D) $\lim _{x \rightarrow x_{0}} f(x) \neq a_{n}$
45. If R is the radius of convergence and β is the exact interval of convergence of the power series $\sum \frac{(x-1)^{n}}{2^{n}}$, then :
(A) $\mathrm{R}=2$ and $\beta=(-1,3)$
(B) $\mathrm{R}=4$ and $\beta=(-1,5)$
(C) $\mathrm{R}=\infty$ and $\beta=(-1,3)$
(D) None of the above
46. Which of the following forms a group ?
(A) $\{1,2,3\}$ under multiplication modulo 4
(B) $\{1,-1, \mathrm{i},-\mathrm{i}\}$ under addition
(C) $\{0,1,2,3\}$ under multiplication modulo 4
(D) $\{1,2,3,4\}$ multiplication modulo 5
47. In the group $\operatorname{GL}\left(2, Z_{11}\right)$, the inverse of $\left(\begin{array}{ll}2 & 6 \\ 5 & 5\end{array}\right)$ is $\left(\begin{array}{cc}k & k \\ k+1 & k-1\end{array}\right)$, then $5 k+3$ equals :
(A) 45
(B) 46
(C) 47
(D) None of the above
48. In the multiplicative group $\{1,-1, i,-i\}$, if x is the inverse of -1 and y is the inverse of i, then xy equals :
(A) i
(B) -i
(C) 1
(D) -1
49. For an abelian group G with $a, b \in G$ and $n a$ non-negative integer, which of the following statements is/are true ?
(1) $(a b)^{n}=a^{n} b^{n}$
(2) $(a b)^{-1}=a^{-1} b^{-1}$
(A) Both (1) and (2)
(B) Only (1)
(C) Only (2)
(D) Neither (1) nor (2) 'e
50. Which of the following is NOT true for a group G of order 7?
(A) G is cyclic
(B) G is abelian
(C) G has no proper subgroups
(D) G has a unique proper subgroup
51. What is the number of proper subgroups of a finite cyclic group of order 12 ?
(A) One
(B) Two
(C) Four
(D) Six
52. What is the order of element 3 in the group $(\{0,1,2,3,4\},+5)$?
(A) 4
(B) 5
(C) 6
(D) None of the above
53. Which of the following statements is/are true ?
(1) The intersection of any collection of normal subgroups is itself a normal subgroup.
(2) If H and K are subgroups of an abelian group G, then HK is a subgroup of G.
(A) Both (1) and (2)
(B) Only (1)
(C) Only (2)
(D) Neither (1) nor (2)
54. Which of the following statements is/are true ? 57. The ring of integers is :
(1) A subgroup H of index 2 in a group G is a normal subgroup of G.
(2) If H and N are subgroups of a group G , with N normal in G , then $\mathrm{H} \cap \mathrm{N}$ is normal in G.
(A) Only (1)
(B) Only (2)
(C) Both (1) and (2)
(D) Neither (1) nor (2)
55. Which one of the following is NOT true ?
(A) A quotient group of an abelian group is abelian.
(B) A quotient group of a cyclic group is cyclic.
(C) The quotient group $\mathrm{P}_{3} / \mathrm{A}_{3}$ is an abelian group, where P_{3} is the symmetric group of degree 3 and A_{3} is the alternating group of order 3.
(D) The symmetric group P_{3} of degree 3 is abelian.
i6. The set M of all nxn matrices with their elements as real numbers is a :
(A) Commutative ring with unity
(B) Non-commutative ring with unity
(C) Non-commutative ring without unity
(D) Ring without zero divisors
(A) A field
(B) An integral domain
(C) A division ring
(D) None of the above
58. The ring of all 2×2 matrices over rationals is :
(A) An integral domain
(B) A commutative ring
(C) A field
(D) None of the above
59. Which of the following is NOT order of a finite field ?
(A) 81
(B) 125
(C) 32
(D) 36
60. Which of the following statements is/are true ?
(1) A ring has more than one unity.
(2) A unit of a ring divides every element of the ring.
(A) Both (1) and (2)
(B) Only (1)
(C) Only (2)
(D) Neither (1) nor (2)

ENTRANCE TEST-2021

SCHOOL OF PHYSICAL \& MATHEMATICAL SCIENCES MATHEMATICS

Total Questions	$:$	60
Time Allowed	$:$	70 Minutes

Instructions for Candidates :

1. Write your Entrance Test Roll Number in the space provided at the top of this page of Question Booklet and fill up the necessary information in the spaces provided on the OMR Answer Sheet.
2. OMR Answer Sheet has an Original Copy and a Candidate's Copy glued beneath it at the top. While making entries in the Original Copy, candidate should ensure that the two copies are aligned properly so that the entries made in the Original Copy against each item are exactly copied in the Candidate's Copy.
3. All entries in the OMR Answer Sheet, including answers to questions, are to be recorded in the Original Copy only.
4. Choose the correct / most appropriate response for each question among the options $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D and darken the circle of the appropriate response completely. The incomplete darkened circle is not correctly read by the OMR Scanner and no complaint to this effect shall be entertained.
5. Use only blue/black ball point pen to darken the circle of correct/most appropriate response. In no case $\mathrm{gel} /$ ink pen or pencil should be used.
6. Do not darken more than one circle of options for any question. A question with more than one darkened response shall be considered wrong.
7. There will be 'Negative Marking' for wrong answers. Each wrong answer will lead to the deduction of 0.25 marks from the total score of the candidate.
8. Only those candidates who would obtain positive score in Entrance Test Examination shall be eligible for admission.
9. Do not make any stray mark on the OMR sheet.
10. Calculators and mobiles shall not be permitted inside the examination hall.
11. Rough work, if any, should be done on the blank sheets provided with the question booklet.
12. OMR Answer Sheet must be handled carefully and it should not be folded or mutilated in which case it will not be evaluated.
13. Ensure that your OMR Answer Sheet has been signed by the Invigilator and the candidate himself/ herself.
14. At the end of the examination, hand over the OMR Answer Sheet to the invigilator who will first tear off the original OMR sheet in presence of the Candidate and hand over the Candidate's Copy to the candidate.
15. The infimum and supremum of the set $\left\{1+\frac{(-1)^{\mathrm{n}}}{\mathrm{n}}: \mathrm{n} \in \mathbb{N}\right\}$ is :
(A) $-1,1$
(B) 0,1
(C) $-1, \frac{2}{3}$
(D) $0, \frac{2}{3}$
16. For any positive real number a there exists a positive integer n such that :
(A) $\mathrm{n}>\mathrm{a}$
(B) $\mathrm{n}<\mathrm{a}$
(C) $\mathrm{n}=\mathrm{a}$
(D) None of the above
17. If $\mathrm{A}=\{1,2,3 \ldots \mathrm{n}\}$ then the set of limit points of A is :
(A) Countable
(B) Uncountable
(C) Empty
(D) Singleton
18. A subset S of real numbers has a limit point if :
(A) S is finite
(B) S is countably infinite
(C) S is infinite and bounded
(D) S is uncountable
19. The sequence $\left(\rho^{n}\right)$ converges for :
(A) $\rho>1$
(B) $-1 \leq \rho<1$
(C) $\rho<-1$
(D) $-1<\rho \leq 1$
20. The sequence $\left(\mathrm{n}+(-1)^{\mathrm{n}}\right)$ is :
(A) Convergent
(B) Divergent
(C) Oscillates finitely
(D) Oscillates infinitely
21. The sequence $\left(a_{n}\right)$ defined by the recursion formula $a_{n+1}=\sqrt{3 a_{n}}, a_{1}=1$ is :
(A) Monotonically decreasing
(B) Monotonically increasing
(C) Monotonically increasing and unbounded
(D) Monotonically increasing and bounded.
22. The sequence $\left(a_{n}\right)$ where $a_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$ converges to :
(A) 1
(B) 0
(C) $\frac{1}{2}$
(D) None of the above
23. If $\sum_{n=1}^{\infty} a_{n}$ is convergent, then for some finite number $\alpha \geq 1$ the series :
(i) $\sum_{n=1}^{\infty} a_{n}$
(ii) $\sum_{n=1}^{\infty} \alpha_{n}$
(A) (i) is convergent (ii) is divergent
(B) (i) is divergent
(ii) is convergent
(C) Both are convergent
(D) Both are divergent
24. The series $\sum_{n=1}^{\infty}\left\{\left(n^{3}+1\right)^{\frac{1}{3}}-n\right\}^{p}$ is :
(A) Convergent for $\mathrm{p}=1$
(B) Divergent for $\mathrm{p}=1$
(C) Divergent for all values of p
(D) None of the above
25. The series $\mathrm{x}+\frac{\mathrm{x}^{2}}{2}+\frac{\mathrm{x}^{3}}{3}+\ldots$:
(A) Converges for $\mathrm{x}>1$
(B) Converges for $\mathrm{x}<1$
(C) Converges for $\mathrm{x}=1$
(D) Converges for all values of x
26. The series $1-\frac{1}{2^{\mathrm{p}}}+\frac{1}{3^{\mathrm{p}}}-\frac{1}{4^{\mathrm{p}}} \ldots$ converges for :
(A) $\mathrm{p}>1$
(B) $\mathrm{p}<1$
(C) $p>0$
(D) $\mathrm{p}<0$
27. The maximum value of $(x-1)^{2} e^{x}$ is attained at :
(A) e
(B) -e
(C) 1
(D) -1
28. $\lim _{\mathrm{x} \rightarrow \frac{\pi}{2}} \frac{\log \left(\mathrm{x}-\frac{\pi}{2}\right)}{\tan \mathrm{x}}=$
(A) $\frac{\pi}{2}$
(B) $-\frac{\pi}{2}$
(C) 0
(D) 1
29. For which of the following functions Rolle's theorem fails?
(A) $\sin x ; x \in[-\pi, \pi]$
(B) $\frac{\sin \mathrm{x}}{\mathrm{e}^{\mathrm{x}}} ; \mathrm{x} \in[0, \pi]$
(C) $|x| ; x \in[-1,1]$
(D) $\mathrm{x}^{3}-4 \mathrm{x} ; \mathrm{x} \in[-2,2]$
30. Which of the following functions doesn't have the Maclaurin's expansion :
(A) $\log x$
(B) $\log (1+x)$
(C) $\log \sec x$
(D) $\log \cos x$
31. The angle between tangent and radius vector for the curve $r=a(1+\cos \theta)$ at $\theta=\frac{\pi}{2}$ is :
(A) $\frac{\pi}{2}$
(B) $\frac{3 \pi}{2}$
(C) $\frac{\pi}{4}$
(D) $\frac{3 \pi}{4}$
32. The curve $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ has the asymptotes:
(A) $y= \pm b x$
(B) $y=0$
(C) $x= \pm b y$
(D) $x=0$
33. Which of the following is true for the functions
(i) $y=e^{x}$
(ii) $\mathrm{y}=\log \mathrm{x}$
(A) (i) is convex upwards (ii) is concave upwards
(B) (i) is concave upwards (ii) is convex upwards
(C) (i) is convex downwards (ii) is concave downwards
(D) (i) is concave downwards (ii) is convex downwards
34. Which of the following statements is true for the curve $x^{4}+y^{4}=4 a^{2} x y$?
(A) The curve is symmetrical w.r.t. $\mathrm{x}+\mathrm{y}=0$
(B) The curve is symmetrical w.r.t. $\mathrm{x}=0$
(C) The curve is symmetrical w.r.t. $\mathrm{y}=0$
(D) The curve is symmetrical w.r.t. $\mathrm{x}=\mathrm{y}$
35. The functional sequence $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}$ is :
(A) Uniformly convergent in [0, 1]
(B) Uniformly convergent in $[-1,1]$
(C) Uniformly convergent in $[-1,0]$
(D) Uniformly convergent in [1, 2]
36. The series $\sum_{n=1}^{\infty} f_{n}(x)$ is uniformly convergent on $[\mathrm{a}, \mathrm{b}$] if there exists a convergent series of positive numbers ΣM_{n} such that for all $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$:
(A) $\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right| \leq \mathrm{M}_{\mathrm{n}} \forall \mathrm{n}$
(B) $\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right| \geq \mathrm{M}_{\mathrm{n}} \forall \mathrm{n}$
(C) $\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right| \leq \sqrt{\mathrm{M}_{\mathrm{n}}} \forall \mathrm{n}$
(D) $\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right| \geq \sqrt{\mathrm{M}_{\mathrm{n}}} \forall \mathrm{n}$
37. The limit of a sequence of functions is continuous if :
(A) Every function of the sequence is continuous
(B) The convergence is uniform
(C) Either (A) or (B)
(D) Both (A) and (B)
38. The function $f(x)=\left\{\begin{array}{ll}3 x-2 & , x \leq 0 \\ x+1, & x>0\end{array}\right.$ is :
(A) Continuous
(B) Discontinuous at $\mathrm{x}=-1$
(C) Discontinuous at $\mathrm{x}=2$
(D) Discontinuous at the origin
39. For $u=\log (\tan x+\tan y), \sin 2 x \frac{\partial u}{\partial x}+\sin 2 y \frac{\partial u}{\partial y}=$
(A) 0
(B) 1
(C) 2
(D) 4
40. Leibnitz theorem is used to find :
(A) $\mathrm{n}^{\text {th }}$ derivative of sum of two functions
(B) $\mathrm{n}^{\text {th }}$ derivative of subtraction of two functions
(C) $\mathrm{n}^{\text {th }}$ derivative of product of two functions
(D) None of the above
41. $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=$
(A) 0
(B) 1
(C) $\frac{1}{\mathrm{e}}$
(D) e
42. $\int \frac{\mathrm{dx}}{1-4 \cos ^{2} \mathrm{x}}=$
(A) $\frac{1}{2 \sqrt{3}} \log \frac{\tan x+\sqrt{3}}{\tan x-\sqrt{3}}$
(B) $\frac{1}{2 \sqrt{3}} \log \frac{\tan x-\sqrt{3}}{\tan x+\sqrt{3}}$
(C) $\frac{1}{2 \sqrt{3}} \log \frac{\tan x+2 \sqrt{3}}{\tan x-2 \sqrt{3}}$
(D) $\frac{1}{2 \sqrt{3}} \log \frac{\tan x-2 \sqrt{3}}{\tan x+2 \sqrt{3}}$
43. $\int \frac{\mathrm{dx}}{(\mathrm{x}+1) \sqrt{\mathrm{x}+2}}=$
(A) $\log \frac{\sqrt{x+2}}{\sqrt{x+2}}-1$
(B) $\log \frac{\sqrt{\mathrm{x}+2}}{\sqrt{\mathrm{x}+2}}+1$
(C) $\log \frac{\sqrt{x+2}+1}{\sqrt{x+2}-1}$
(D) $\log \frac{\sqrt{x+2}-1}{\sqrt{x+2}+1}$
44. If $f(m, n)=\int_{0}^{\pi / 2} \cos ^{m} x \cos n x d x$ then :
(A) $f(m, n)=\frac{n}{m+n} f(m+1, n+1)$
(B) $f(m, n)=\frac{m}{m+n} f(m+1, n+1)$
(C) $f(m, n)=\frac{n}{m+n} f(m-1, n-1)$
(D) $\mathrm{f}(\mathrm{m}, \mathrm{n})=\frac{\mathrm{m}}{\mathrm{m}+\mathrm{n}} \mathrm{f}(\mathrm{m}-1, \mathrm{n}-1)$
45. For integer n, the Bessel functions $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$ and $\mathrm{J}_{-\mathrm{n}}(\mathrm{x})$ are connected with the relation :
(A) $J_{-n}(x)=-J_{n}(x)$
(B) $\mathrm{J}_{-\mathrm{n}}(\mathrm{x})=(-1)^{\mathrm{n}} \mathrm{J}_{\mathrm{n}}(\mathrm{x})$
(C) $\mathrm{J}_{-\mathrm{n}}(\mathrm{x})=-\mathrm{J}_{-\mathrm{n}}(\mathrm{x})$
(D) $\mathrm{J}_{-\mathrm{n}}(\mathrm{x})=(-1)^{\mathrm{n}} \mathrm{J}_{-\mathrm{n}}(\mathrm{x})$
46. $\int J_{n}(x) d x=$
(A) $-\mathrm{J}_{2}(\mathrm{x})-\frac{2}{\mathrm{x}} \mathrm{J}_{2}(\mathrm{x})$
(B) $\mathrm{J}_{2}(\mathrm{x})-\frac{2}{\mathrm{x}} \mathrm{J}_{2}(\mathrm{x})$
(C) $-\mathrm{J}_{2}(\mathrm{x})+\frac{2}{\mathrm{x}} \mathrm{J}_{2}(\mathrm{x})$
(D) None of the above
47. The Legendre polynomial for $\mathrm{m} \neq \mathrm{n}$,
$\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=$
(A) -1
(B) 1
(C) 0
(D) None of the above
48. Which of the following sets is a group under multiplication modulo 8 ?
(A) $\{1,3,5,7\}$
(B) $\{1,2,3,4\}$
(C) $\{2,4,6,8\}$
(D) $\{1,2,3,4,5,6,7\}$
49. What is the order of the dihedral group of square?
(A) 2
(B) 4
(C) 6
(D) 8
50. Which of the following is not a group under multiplication?
(A) $\mathbb{R}-\{0\}$
(B) \mathbb{R}
(C) $\{1,-1, \mathrm{i},-\mathrm{i}\}$
(D) $\left\{1, \omega, \omega^{2}\right\}$
51. The identity of the set of positive rationals w.r.t. the binary operation $a * b=\frac{a b}{3}$ is :
(A) 0
(B) 1
(C) 3
(D) $\frac{1}{3}$
52. If G is a finite group of even order
(i) order of subgroup of G divides order of G
(ii) G has an element of order two.
(A) Only (i) is true
(B) Only (ii) is true
(C) Both are true
(D) Both are false
53. If H and K are subgroups of a group G of finite order and $\mathrm{O}(\mathrm{H})>\sqrt{\mathrm{O}(\mathrm{G})}, \mathrm{O}(\mathrm{K})>\sqrt{\mathrm{O}(\mathrm{G})}$, then :
(A) $\mathrm{O}(\mathrm{H} \cap \mathrm{K})=\sqrt{\mathrm{O}(\mathrm{G})}$
(B) $\mathrm{O}(\mathrm{H} \cap \mathrm{K})=1$
(C) $\mathrm{O}(\mathrm{H} \cap \mathrm{K})<1$
(D) $\mathrm{O}(\mathrm{H} \cap \mathrm{K})>1$
54. If $H \subseteq G$ be a subgroup of a group G then which of the following is not true ?
(A) $\mathrm{Ha}=\mathrm{H}$ if $\mathrm{a} \in \mathrm{H}$
(B) $\mathrm{Ha}=\mathrm{H}$ if $\mathrm{a} \in \mathrm{G}$
(C) $\mathrm{Ha}=\mathrm{Hb}$ if $\mathrm{ab}^{-1} \in \mathrm{H}$
(D) $\mathrm{ab}^{-1} \in \mathrm{H}$ if $\mathrm{Ha}=\mathrm{Hb}$
55. Which of the following statements is true ?
(A) Any finite group of order n is cyclic if it has an element of order n.
(B) Every cyclic group need not be abelian.
(C) The group of integers is not cyclic.
(D) None of the above
56. If M is a set of all matrices of the type $\left(\begin{array}{rr}a & b \\ -\bar{b} & \bar{a}\end{array}\right)$ where bars denote the complex conjugates, then M is a :
(A) Division ring
(B) Ring but not a division ring
(C) Field
(D) Not a ring
57. If R is a ring (i) $C=\{x \in R: x y=y x$, $\forall y \in R\}$, (ii) $N(a)=\{r \in R: a r=r a\}$ then :
(A) C is a subring, $\mathrm{N}(\mathrm{a})$ is not
(B) $\mathrm{N}(\mathrm{a})$ is a subring, C is not
(C) Both are subrings
(D) None is a subring
58. In a ring M of matrices of order 2 over integers the set $S=\left\{\left(\begin{array}{ll}a & 0 \\ b & 0\end{array}\right): a, b \in \mathbb{Z}\right\}$ is $a:$
(A) Right ideal
(B) Left ideal
(C) Two sided ideal
(D) None of the above
59. If $\mathrm{R}[\mathrm{x}]$ denotes a polynomial ring over R then which of the following statements is true ?
(A) R is commutative if $\mathrm{R}[\mathrm{x}]$ is commutative
(B) $R[x]$ is commutative if R is commutative
(C) R has no proper zero divisors if $\mathrm{R}[\mathrm{x}]$ has no proper zero divisors
(D) All the above
60. The union of two subgroups N_{1} and N_{2} of a group G is normal if :
(A) $\mathrm{N}_{1} \cap \mathrm{~N}_{2}=\varphi$
(B) $\mathrm{N}_{1} \cap \mathrm{~N}_{2} \neq \varphi$
(C) $\mathrm{N}_{1} \cup \mathrm{~N}_{2} \neq \varphi$
(D) None of the above
61. Which of the following is true for the groups $\mathrm{G}_{1}=\{1,-1, \mathrm{i},-\mathrm{i}\}$ and $\mathrm{G}_{2}=(\mathbb{Z},+)$?
(A) All subgroups of G_{1} are normal
(B) All the subgroups of G_{2} are normal
(C) Both (A) and (B)
(D) None of the above
62. If N is a normal subgroup of a group G then :
(A) $\mathrm{O}\left(\frac{\mathrm{G}}{\mathrm{N}}\right)=\mathrm{O}(\mathrm{G})-\mathrm{O}(\mathrm{N})$
(B) $\mathrm{O}\left(\frac{\mathrm{G}}{\mathrm{N}}\right)=\mathrm{O}(\mathrm{G})+\mathrm{O}(\mathrm{N})$
(C) $\mathrm{O}\left(\frac{\mathrm{G}}{\mathrm{N}}\right)=\mathrm{O}(\mathrm{G}) \cdot \mathrm{O}(\mathrm{N})$
(D) $\mathrm{O}\left(\frac{\mathrm{G}}{\mathrm{N}}\right)=\frac{\mathrm{O}(\mathrm{G})}{\mathrm{O}(\mathrm{N})}$
63. $\frac{d x}{d y}+Q x=P x^{n}$ is a Bernoulli's differential equation where P and Q are :
(A) Functions of x only
(B) Functions of x or constants
(C) Constants only
(D) Functions of y or constants
64. $\frac{1}{\mathrm{D}^{2}+4} \cos 2 \mathrm{x}=$
(A) $\frac{x}{4} \sin 2 x$
(B) $\frac{x}{-4} \sin 2 x$
(C) $\frac{x}{4} \cos 2 x$
(D) $\frac{x}{-4} \cos 2 x$
65. If M and N are homogenous in $\mathrm{Mdx}+\mathrm{Ndy}=0$ then the integrating factor is :
(A) $\mathrm{Mx}+\mathrm{Ny}$
(B) $\mathrm{Mx}-\mathrm{Ny}$
(C) $\frac{1}{\mathrm{Mx}+\mathrm{Ny}}$
(D) $\frac{1}{\mathrm{Mx}-\mathrm{Ny}}$
66. $\frac{1}{\mathrm{f}(\mathrm{D})} \mathrm{e}^{-\mathrm{x}} \mathrm{V}=$
(A) $e^{-x} \frac{1}{f(D)} V$
(B) $\mathrm{e}^{-\mathrm{x}+1} \frac{1}{\mathrm{f}(\mathrm{D})} \mathrm{V}$
(C) $e^{-x} \frac{1}{f(D+1)} V$
(D) $e^{-x} \frac{1}{f(D-1)} V$
67. The solution of the ordinary differential equation $y^{2} \log y=x y p+p^{2}$ is :
(A) $\log x=c y+c^{2}$
(B) $\log y=c x+c^{2}$
(C) $\log \mathrm{y}^{2}=\mathrm{cx}+\mathrm{c}^{2}$
(D) $\log x^{2}=c y+c^{2}$
68. The solution of the ordinary differential equation $\mathrm{p}^{2}=\mathrm{y}^{2}+1$ is:
(A) $y=\sin (c \pm x)$
(B) $y=\cos (c \pm x)$
(C) $y=\sinh (c \pm x)$
(D) $y=\cosh (c \pm x)$
69. What is the singular solution of the differential equation $2 \mathrm{px}+\mathrm{y}^{2} \mathrm{p}^{3}$?
(A) $\mathrm{y}=\mathrm{cx}+\frac{\mathrm{c}^{3}}{8}$
(B) $\mathrm{y}=\mathrm{cx}-\frac{\mathrm{c}^{3}}{8}$
(C) $\mathrm{y}^{2}=\mathrm{cx}-\frac{\mathrm{c}^{3}}{8}$
(D) $\mathrm{y}^{2}=\mathrm{cx}+\frac{\mathrm{c}^{3}}{8}$
70. The singular solution of the ordinary differential equation $y=x p+\frac{a}{p}$ is :
(A) $y^{2}=4 a x$
(B) $y^{2}=-4 a x$
(C) $\mathrm{x}^{2}=4 \mathrm{ay}$
(D) $x^{2}=-4 a y$
71. The partial differential equation by eliminating the arbitrary constants of the equation $2 \mathrm{z}=\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}$ is :
(A) $\mathrm{z}=\mathrm{px}+\mathrm{qy}$
(B) $2 \mathrm{z}=\mathrm{px}+\mathrm{qy}$
(C) $2 \mathrm{z}=\mathrm{px}-\mathrm{qy}$
(D) $\mathrm{z}=\mathrm{px}-\mathrm{qy}$
72. What is the general solution of the partial differential equation $\frac{y^{2} z}{x} p+x z q=y^{2}$.
(A) $\varphi\left(x^{3}-y^{3}, x^{3}-z^{3}\right)=0$
(B) $\varphi\left(x^{3}+y^{3}, x^{3}+z^{3}\right)=0$
(C) $\varphi\left(\mathrm{x}^{3}-\mathrm{y}^{3}, \mathrm{x}^{2}-\mathrm{z}^{2}\right)=0$
(D) $\varphi\left(x^{3}+y^{3}, x^{2}+z^{2}\right)=0$
73. The complete solution of the partial differential equation $\sqrt{\mathrm{p}}+\sqrt{\mathrm{q}}=1$ is :
(A) $z=-a x+(1-\sqrt{a})^{2} y+c$
(B) $\mathrm{z}=\mathrm{ax}-(1-\sqrt{\mathrm{a}})^{2} \mathrm{y}+\mathrm{c}$
(C) $z=-a x-(1-\sqrt{a})^{2} y+c$
(D) $z=a x+(1-\sqrt{a})^{2} y+c$
74. What is the solution of the partial differential equation $\mathrm{x}+\mathrm{qy}=\mathrm{pq}$?
(A) $a z=\frac{1}{2}(y+a x)^{2}+b$
(B) $a z=\frac{1}{2}(y-a x)^{2}+b$
(C) $a z=(y+a x)^{2}+b$
(D) $a z=(y-a x)^{2}+b$

ROUGH WORK

ROUGH WORK

ENTRANCE TEST-2020

SCHOOL OF PHYSICAL \& MATHEMATICAL SCIENCES MATHEMATICS

Total Questions : 60
Time Allowed : 70 Minutes

\author{

Question Booklet Series
 C
 Roll No. : | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

}

Instructions for Candidates :

1. Write your Entrance Test Roll Number in the space provided at the top of this page of Question Booklet and fill up the necessary information in the spaces provided on the OMR Answer Sheet.
2. OMR Answer Sheet has an Original Copy and a Candidate's Copy glued beneath it at the top. While making entries in the Original Copy, candidate should ensure that the two copies are aligned properly so that the entries made in the Original Copy against each item are exactly copied in the Candidate's Copy.
3. All entries in the OMR Answer Sheet, including answers to questions, are to be recorded in the Original
Copy only. Copy only.
4. Choose the correct / most appropriate response for each question among the options A, B, C and D and darken the circle of the appropriate response completely. The incomplete darkened circle is not correctly read by the OMR Scanner and no complaint to this effect shall be entertained.
5. Use only blue/black ball point pen to darken the circle of correct/most appropriate response. In no case gel/ink pen or pencil should be used.
6. Do not darken more than one circle of options for any question. A question with more than one darkened response shall be considered wrong.
7. There will be 'Negative Marking' for wrong answers. Each wrong answer will lead to the deduction of 0.25 marks from the total score of the candidate.
8. Only those candidates who would obtain positive score in Entrance Test Examination shall be eligible for admission.
9. Do not make any stray mark on the OMR sheet.
10. Calculators and mobiles shall not be permitted inside the examination hall.
11. Rough work, if any, should be done on the blank sheets provided with the question booklet.
12. OMR Answer Sheet must be handled carefully and it should not be folded or mutilated in which case it will not be evaluated.
13. Ensure that your OMR Answer Sheet has been signed by the Invigilator and the candidate himself/ herself.
14. At the end of the examination, hand over the OMR Answer Sheet to the invigilator who will first tear off the original OMR sheet in presence of the Candidate and hand over the Candidate's Copy to the candidate.
15. In S_{n} the number of distinct cycles of length $\mathrm{r} \leq \mathrm{n}$ is :
(A) $\frac{1}{r} \frac{n!}{(n-r)!}$
(B) $r \frac{n!}{(n-r)!}$
(C) $n \frac{n!}{(n-r)!}$
(D) None
16. The identity of the group $\frac{\mathrm{G}}{\mathrm{N}}$ is :
(A) G
(B) $\frac{1}{G}$
(C) N
(D) $\frac{1}{\mathrm{~N}}$
17. Which of the following is not a ring (w.r.t. usual 8 operations)?
(A) $\mathbb{Z}[\mathrm{i}]=\{\mathrm{a}+\mathrm{ib}: \mathrm{a}, \mathrm{b} \in \mathbb{Z}\}$
(B) $\mathrm{R}=\{\mathrm{a}+\mathrm{b} \sqrt{2}+\mathrm{c} \sqrt{3}+\mathrm{d} \sqrt{2}: \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in \mathbf{Q}$
(C) $\mathbb{Q}[\sqrt{\mathrm{p}}]=\{\mathrm{a}+\mathrm{b} \sqrt{\mathrm{p}}: \mathrm{a}, \mathrm{b} \in \mathbf{Q}\}$ for prime p
(D) $\mathrm{R}=\left\{\mathrm{a}: \mathrm{a} \in \mathbb{Q}^{*}\right\}$
18. If $R=\{f:[a, b] \rightarrow \mathbb{R}, ; f$ is continuous $\}$, then :
(A) R is not a ring
(B) R is a ring without unity
(C) R is a ring but not commutative
(D) R is a commutative ring with unity
19. $G_{n}=\left\{e^{\frac{2 i \pi r}{n}}: r=0,1,2,3, \ldots ., n-1\right\}$ is a cyclic group with generator :
(A) 1
(B) e
(C) $\mathrm{e}^{\frac{2 i \pi}{n}}$
(D) $\mathrm{e}^{2 \mathrm{in} \pi}$
20. The symmetric group S_{3} is :
(A) Abelian
(B) Infinite
(C) Non-Abelian
(D) Cyclic
21. Which of the following is a homomorphism from $(\mathbb{Z},+)$ to $(\mathbb{R},+)$?
(A) $f(a)=a^{2}$
(B) $f(a)=2 a$
(C) $f(a)=\frac{2}{a}$
(D) $f(a)=a^{3}$
22. Let M be the ring of all 2×2 matrices, then $S=\left\{\left(\begin{array}{ll}a & 0 \\ b & 0\end{array}\right): a, b \in \mathbb{Z}\right\}$ is :
(A) Left ideal but not right ideal
(B) Right ideal but not left ideal
(C) Two sided ideal
(D) None of the above
23. Which of the following is true ?
(A) Ring of order 7 is non-commutative
(B) Ring with unity of order 25 is non-commutative
(C) Ring with unity of order 9 is commutative
(D) Ring of order 49 is always commutative

JJ-307-C

10. Which of the following is not true?
(A) Every integral domain is a field
(B) Every field is not an integral domain
(C) Every finite integral domain is a field
(D) Every finite integral domain is not a field
11. If R is a ring and $R[x]$ the polynomial ring. Then :
(A) If R is commutative then $R[x]$ is commutative
(B) If R has no proper zero divisors then $\mathrm{R}[\mathrm{x}]$ has no proper zero divisors
(C) If R is an integral domain the $\mathrm{R}[\mathrm{x}]$ is an integral domain
(D) If R is a field then $R[x]$ is a field
12. For the Bessel function $\mathrm{J},\left[\mathrm{x}^{\mathrm{n}} \mathrm{J}_{\mathrm{n}}(\mathrm{x})\right]^{\prime}=$
(A) $\mathrm{x}^{\mathrm{n}} \mathrm{J}_{\mathrm{n}-1}(\mathrm{x})$
(B) $\mathrm{x}^{\mathrm{n}-1} \mathrm{~J}_{\mathrm{n}-1}(\mathrm{x})$
(C) $x^{n} J_{n}(x)$
(D) $n x^{n-1} J_{n-1}(x)$
13. The smallest positive root of $J_{0}(x)=0$ lies in the interval :
(A) $(\sqrt{2}, 2)$
(B) $(0,1)$
(C) $(3, \sqrt{10})$
(D) $(2, \sqrt{8})$
14. For the Legendre function, $\mathrm{P}_{\mathrm{n}}(-\mathrm{x})=$
(A) $-\mathrm{P}_{\mathrm{n}}(\mathrm{x})$
(B) $(-1)^{n} \mathrm{P}_{\mathrm{n}}(\mathrm{x})$
(C) $P_{n}(x)$
(D) $(-1)^{n+1} P_{n}(x)$
15. The order of the Legendre differential equation is :
(A) 1
(B) 2
(C) 3
(D) 4
16. Which of the following statements is not true ?
(A) Every infinite set has a bijection with its proper subset
(B) Every finite set can be put in one-one, onto correspondence with the set $\{1,2,3, \ldots . n\}$
(C) Every infinite is equivalent to the set of integers
(D) Every infinite set contains a countable set
17. Which of the following functions is not uniformly continuous?
(A) $f(x)=x^{2}$ in $[1,2]$
(B) $f(x)=\sqrt{x}$ in $[0,2]$
(C) $f(x)=x$ in $[0,1]$
(D) $f(x)=\frac{1}{x}$ in $(0,1)$
18. The number of limit points of the set $\left\{\frac{1}{n} ; n=1,2,3, \ldots \ldots ..\right\}$ is :
(A) 1
(B) 2
(C) 0
(D) ∞
19. Which of the following sequences is not convergent?
(A) $\left(\frac{1}{n}\right)$
(B) $\left(\frac{1}{\mathrm{n}^{2}}\right)$
(C) $\left(\frac{\mathrm{n}}{\mathrm{n}+1}\right)$
(D) $\left(\frac{n^{2}}{n+1}\right)$
20. The series $\frac{1}{(\log 2)^{\mathrm{p}}}+\frac{1}{(\log 3)^{\mathrm{p}}}+\ldots \frac{1}{(\log n)^{\mathrm{p}}}+\ldots$
(A) Converges for $\mathrm{p}>0$
(B) Converges for $\mathrm{p}<0$
(C) Diverges for $\mathrm{p}>0$
(D) Oscillates

JJ-307-C

21. Which among the following series is not 25 . Which of the following sets is not countable ? convergent?
(A) $\frac{\mathrm{p}^{\mathrm{n}}}{\mathrm{n}!}, \mathrm{p}>0$
(A) $\mathbb{Z} \times \mathbb{Z}$
(B) \mathbb{Q}
(C) $\{x: 0<x<1\}$
(B) $\frac{\mathrm{p}^{\mathrm{n}}}{\mathrm{n}^{\mathrm{n}}}, \mathrm{p}>0$
(C) $\frac{\sqrt{n} x^{n}}{\sqrt{n^{2}+1}}, x \geq 1$
(D) $\frac{1.2 .3 \ldots . \mathrm{n}}{7.10 \ldots .(3 n+4)}$
22. Which of the following statements is not true ?
(A) Every bounded sequence is convergent
(B) Every convergent sequence is bounded
(C) Every bounded monotonic sequence is convergent
(D) Every bounded sequence with unique limit point is convergent
23. For the series (i) $\sum \frac{(-1)^{n+1}}{\sqrt{n}}$ (ii) $\sum \frac{(-1)^{n+1}}{3 n-2}$:
(A) Both are absolutely convergent
(B) Only (i) is absolutely convergent
(C) Only (ii) is absolutely convergent
(D) Both are conditionally convergent
24. The function $f(x)= \begin{cases}\frac{\sin 2 x}{x} & \text { when } x \neq 0 \\ 1 & \text { when } \mathrm{x}=0\end{cases}$
(A) Removable discontinuity at origin
(B) Essential discontinuity
(C) No discontinuity
(D) None of the above
(D) $\left\{\frac{1}{\mathrm{n}}: \mathrm{n}=1,2,3, \ldots \ldots\right\}$
25. The set $S=\left\{x: x \in \mathbb{Q}\right.$ and $\left.x^{2}<2\right\}$:
(A) Is a bounded above subset and supremum exists in \mathbb{Q}
(B) Is not bounded above subset of \mathbb{Q}
(C) Is a bounded above and has not a supremum in \mathbb{Q}
(D) None
26. If $\left(a_{n}\right)$ is a Cauchy sequence in \mathbb{R}, then :
(A) $\left(a_{n}\right)$ is bounded but not convergent
(B) $\left(a_{n}\right)$ is convergent but not bounded
(C) $\left(a_{n}\right)$ is convergent as well as bounded
(D) Nothing can be said
27. The sequence of functions $f_{n}(x)=e^{-n x}, x \in[1,3]$ is :
(A) Point-wise convergent but not uniformly convergent
(B) Uniformly convergent
(C) Not convergent
(D) None
28. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{500}}{(1.0001)^{n}}$:
(A) Converges absolutely
(B) Converges conditionally not absolutely
(C) Diverges to $-\infty$
(D) Diverges to ∞

JJ-307-C

30. According to root test the positive term series $\sum \mathrm{a}_{\mathrm{n}}$ converges if $l<1$ where :
(A) $l=\lim _{n \rightarrow \infty}\left(a_{n}\right)^{n}$
(B) $l=\lim _{n \rightarrow \infty}\left(\mathrm{a}_{\mathrm{n}}\right)^{\frac{1}{n}}$
(C) $l=\lim _{n \rightarrow \infty}\left(\mathrm{na}_{\mathrm{n}}\right)^{n}$
(D) $l=\lim _{\mathrm{n} \rightarrow \infty}\left(\mathrm{na}_{\mathrm{n}}\right)^{\frac{1}{n}}$
31. $\mathrm{r}=\mathrm{a} \mathrm{e}^{\mathrm{mp} 0}$ represents a :
(A) Circle
(B) Parabola
(C) Cardioid
(D) Spiral
32. Which of the following functions does not have a Taylor's expansion in the interval $[-1,1]$?
(A) $|x|$
(B) $\sin x$
(C) $\cos x$
(D) e^{x}
33. If $f(x)=x^{2}-6 x+8$ in the interval $[2,4]$. Then $f^{\prime}(x)=0$, where $x=$
(A) 2
(B) 4
(C) 3
(D) 1
34. Leibnitz's theorem is used to find:
(A) $\mathrm{n}^{\text {th }}$ derivative of trigonometric function
(B) $n^{\text {th }}$ derivative of exponential functions
(C) $\mathrm{n}^{\text {th }}$ derivative of quotient of two functions
(D) $\mathrm{n}^{\text {th }}$ derivative of product of two functions
35. If $y=100^{x}$. Then the $n^{\text {th }}$ derivative $y_{n}=$
(A) 100^{x}
(B) $100^{\mathrm{x}} \times 100^{\text {n }}$
(C) $100^{x} \times 2^{n}$
(D) $100^{x} \times 2$
36. The degree of the homogeneous function $\frac{x^{2}+y^{2}}{x^{2}-y^{2}} \cos \frac{y}{x}$ is :
(A) 0
(B) 1
(C) 2
(D) -1
37. For the functions (i) $y=e^{x}$ (ii) $y=\log x$:
(A) Both are concave
(B) Both are convex
(C) (i) is concave
(ii) is convex
(D) (i) is convex
(ii) is concave
38. Which of the following statement is true ?
(A) Angle between two curves is the angle between their tangents
(B) Angle between two curves is the angle between their normals
(C) Angle between two curves is the angle between tangent of one curve and normal of other
(D) None of the above statements is true
39. The maximum value of the function $f(x)=\frac{\log x}{x}$ is :
(A) e
(B) e^{2}
(C) $\log \mathrm{e}$
(D) $\frac{1}{\mathrm{e}}$
40. $\lim _{\theta \rightarrow 0} \frac{\sin \theta-\theta \cos \theta}{\sin \theta-\theta}=$
(A) 1
(B) -1
(C) -2
(D) 2

JJ-307-C

41. The curvature of an ellipse is maximum at :
(A) Ends of major axis
(B) Ends of minor axis
(C) Ends of the line through focus
(D) None
42. The number of asymptotes to the curve $\left(\frac{y}{x}\right)^{2}=\frac{4 a}{x}$ is :
(A) 1
(B) 2
(C) 3
(D) 0
43. The length of polar sub-tangent to the curve $\mathrm{f}(\mathrm{r}, \theta)=0$ is :
(A) $\mathrm{r}^{2} \frac{\mathrm{~d} \theta}{\mathrm{dr}}$
(B) $\mathrm{r}^{2} \frac{\mathrm{dr}}{\mathrm{d} \theta}$
(C) $\frac{1}{\mathrm{r}^{2}} \frac{\mathrm{~d} \theta}{\mathrm{dr}}$
(D) $\frac{1}{\mathrm{r}^{2}} \frac{\mathrm{dr}}{\mathrm{d} \theta}$
44. $\int_{0}^{\pi} \frac{\sin n x}{\sin x} d x=$
(A) 0 if n is even
(B) π if n is odd
(C) Both (A) and (B) true
(D) None
45. $\int \frac{\sqrt{\mathrm{x}}}{\mathrm{x}+1}=$
(A) $2 \sqrt{x}-2 \tan ^{-1} \sqrt{x}$
(B) $2 \sqrt{x}-2 \sin ^{-1} \sqrt{x}$
(C) $2 \sqrt{x}-2 \cos ^{-1} \sqrt{x}$
(D) $2 \sqrt{x}-2 \cot ^{-1} \sqrt{x}$
46. (i) \int
(ii) $\frac{d y}{d x}$
(A) (i) is linear (ii) is not
(B) (ii) is linear (i) is not
(C) Both are linear
(D) Both are not linear
47. $\int_{0}^{\frac{\pi}{2}} \sin ^{6} x d x=$
(A) $\frac{6 \pi}{32}$
(B) $\frac{3 \pi}{32}$
(C) $\frac{\pi}{32}$
(D) $\frac{5 \pi}{32}$
48. The order and degree of the differential equation $\left\{1+\left(\frac{d^{2} y}{d x^{2}}\right)^{3}\right\}^{2}=3\left(\frac{d^{3} y}{d x^{3}}\right)^{2}$ is :
(A) 3 and 2
(B) 2 and 3
(C) 3 and 6
(D) 6 and 6
49. The integrating factor of the differential equation $x d y=y(1+x y) d y$ is :
(A) e^{x}
(B) e^{-x}
(C) x
(D) $-x$
50. The differential equation $M d y+N d x=0$ is exact if :
(A) $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
(B) $\frac{\partial N}{\partial y}=\frac{\partial M}{\partial x}$
(C) $\frac{\partial M}{\partial y}=-\frac{\partial N}{\partial x}$
(D) $\frac{\partial N}{\partial y}=-\frac{\partial M}{\partial x}$

JJ-307-C

51. The solution of the differential equation 56 . Which of the following is not a group ?
$\left(1+x^{2}\right)\left(\frac{d y}{d x}-4 x^{2} \cos ^{2} y\right)+x \sin 2 y=0$ with integrating factor $\left(1+x^{2}\right)$ is :
(A) $\left(1+x^{2}\right) \tan y=\frac{4 x^{3}}{3}+3$
(B) $\left(1+x^{2}\right) \sec y=\frac{4 x^{3}}{3}+3$
(C) $\left(1+x^{2}\right) \sin y=\frac{4 x^{3}}{3}+3$
(D) $\left(1+x^{2}\right) \cot y=\frac{4 x^{3}}{3}+3$
52. The solution of the differential equation $p^{2} y+2 p y=y$ is :
(A) $\mathrm{x}^{2}=2 c \mathrm{cxy}+\mathrm{c}^{2}$
(B) $y^{2}=2 c x y+c^{2}$
(C) $\mathrm{x}^{2}=2 \mathrm{cy}+\mathrm{c}^{2}$
(D) $\mathrm{y}^{2}=2 \mathrm{cx}+\mathrm{c}^{2}$
53. The solution of the differential equation $\left(x^{2} D^{2}+3 x D\right) y=\frac{1}{x}$ is :
(A) $\mathrm{A}+\mathrm{Bx}^{-2}+\mathrm{x}^{-1}$
(B) $\mathrm{A}+\mathrm{Bx}+\mathrm{x}^{-1}$
(C) $\mathrm{A}+\mathrm{Bx}^{-2}+\mathrm{x}$
(D) $\mathrm{A}+\mathrm{Bx}^{2}+\mathrm{x}^{-1}$
54. The number of constants in the solution of a partial differential equation depends on:
(A) Order of differential equation
(B) Degree of differential equation
(C) Number of independent variables
(D) Number of dependent variables
55. The differential equation $5 \frac{\partial^{2} z}{\partial \mathrm{x}^{2}}+6 \frac{\partial^{2} z}{\partial \mathrm{y}^{2}}=\mathrm{xy}$ is classified as :
(A) Elliptical
(B) Parabolic
(C) Hyperbolic
(D) None
(A) $(\mathbb{Z},+)$
(B) $(\mathbb{R},+)$
(C) (\mathbb{R}, \times)
(D) $(\mathbb{Q},+)$
56. If $\mathrm{a} * \mathrm{~b}=\frac{\mathrm{ab}}{2} \mathrm{a}, \mathrm{b} \in \mathbb{Q}^{+}, \mathbb{Q}^{+}$is set of positive rationals :
(A) 1
(B) 2
(C) $\frac{3}{2}$
(D) $\frac{1}{2}$
57. The order of i in the multiplicative group $\{-1,1,-i, i\}$ is :
(A) 1
(B) 2
(C) 3
(D) 4
58. If $\left(\mathbb{Z},{ }^{*}\right)$ is a group with $* b=a+b+1, \forall a, b \in \mathbb{Z}$. Then inverse of an element a is :
(A) 0
(B) -2
(C) $-\mathrm{a}-2$
(D) $a+2$.
59. Let $\mathrm{S}=\{1,2,3,4,5\}$ and $\mathrm{f}=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 3 & 5\end{array}\right)$, then the number of orbits of S under the permutation f is :
(A) 1
(B) 2
(C) 3
(D) 4

JJ-307-C

1. The locus of the middle points of a system of parallel chords of a parabola $y^{2}=4 a x$ is :
(A) A straight line
(B) A circle
(C) Anellipse
(D) A parabola
2. The eccentricity of an ellipse whose latus rectum is equal to one half of its minor axis is :
(A) $\frac{1}{2}$
(B) 1
(C) $\frac{\sqrt{3}}{2}$
(D) $\frac{1}{\sqrt{2}}$
3. If e and e^{*} are the eccentricities of a hyperbola and a conjugate hyperbola, then :
(A) $\mathrm{e}^{2}+\mathrm{e}^{* 2}=1$
(B) $\mathrm{e}^{2}+\mathrm{e}^{* 2}=\mathrm{e}^{2} \mathrm{e}^{* 2}$
(C) $\mathrm{e}^{2} \mathrm{e}^{* 2}=1$
(D) $\mathrm{e}+\mathrm{e}^{*}=\mathrm{e} \mathrm{e}^{*}$
4. If $\mathrm{ab}-\mathrm{h}^{2}=0$, then the equation
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents :
(A) A parabola
(B) Anellipse
(C) A circle
(D) A hyperbola
5. Which of the following is the condition for the spheres $a\left(x^{2}+y^{2}+z^{2}\right)+2 l x+2 m y+n=0$ and $b\left(x^{2}+y^{2}+z^{2}\right)=k^{2}$ to cut orthogonally?
(A) $\mathrm{ap}^{2}=\mathrm{bk}$
(B) $\mathrm{bp}^{2}=\mathrm{ak}$
(C) $\mathrm{pk}^{2}=\mathrm{ab}$
(D) $\mathrm{ak}^{2}=\mathrm{bp}$
6. The equation $x^{2}+b y^{2}+c z^{2}+2 u x+2 v y+2 w z+d=0$ will represent a cone if:
(A) $\frac{a^{2}}{u}+\frac{b^{2}}{v}+\frac{c^{2}}{w}=d$
(B) $a u^{2}+b v^{2}+c w^{2}=d$
(C) $\frac{\mathrm{u}^{2}}{\mathrm{a}}+\frac{\mathrm{v}^{2}}{\mathrm{~b}}+\frac{\mathrm{w}^{2}}{\mathrm{c}}=\mathrm{d}$
(D) $\frac{\mathrm{u}^{2}}{\mathrm{a}}+\frac{\mathrm{v}^{2}}{\mathrm{~b}}+\frac{\mathrm{w}^{2}}{\mathrm{c}}=0$
7. The equation of the right circular cylinder whose axis is the z -axis and radius is ' a ' is :
(A) $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$
(B) $\mathrm{x}^{2}+\mathrm{z}^{2}=\mathrm{a}^{2}$
(C) $\mathrm{y}^{2}+\mathrm{z}^{2}=\mathrm{a}^{2}$
(D) $x^{2}+y^{2}+z^{2}=a^{2}$
8. The equation of the tangent planes to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ which are parallel to $l \mathrm{x}+\mathrm{my}+\mathrm{nz}=0$ are :
(A) $l \mathrm{x}+\mathrm{my}+\mathrm{nz}= \pm \sqrt{\mathrm{a} \ell^{2}+\mathrm{bm}^{2}+\mathrm{cn}^{2}}$
(B) $l \mathrm{x}+\mathrm{my}+\mathrm{nz}= \pm \sqrt{\mathrm{a}^{2} \ell^{2}+\mathrm{b}^{2} \mathrm{~m}^{2}+\mathrm{c}^{2} \mathrm{n}^{2}}$
(C) $l \mathrm{x}+\mathrm{my}+\mathrm{nz}= \pm \sqrt{\frac{\ell^{2}}{\mathrm{a}}+\frac{\mathrm{m}^{2}}{\mathrm{~b}}+\frac{\mathrm{n}^{2}}{\mathrm{c}}}$
(D) $l \mathrm{x}+\mathrm{my}+\mathrm{nz}= \pm \sqrt{\frac{\ell^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{m}^{2}}{\mathrm{~b}^{2}}+\frac{\mathrm{n}^{2}}{\mathrm{c}^{2}}}$
9. If $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$, then $A^{4}-5 A^{3}+7 A^{2}-2 A+I$
(is the unit matrix of order 3) is equal to :
(A) $\left[\begin{array}{lll}3 & 1 & 1 \\ 0 & 2 & 0 \\ 1 & 1 & 3\end{array}\right]$
(B) $\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$
(C) $\left[\begin{array}{lll}8 & 5 & 5 \\ 0 & 3 & 0 \\ 5 & 5 & 8\end{array}\right]$
(D) $\left[\begin{array}{lll}5 & 4 & 4 \\ 0 & 1 & 0 \\ 1 & 1 & 3\end{array}\right]$
10. The rank of the matrix $\left[\begin{array}{rrrr}2 & 3 & 4 & -1 \\ 5 & 2 & 0 & -1 \\ -4 & 5 & 12 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]$ is :
(A) 4
(B) 3
(C) 2
(D) 1
11. The necessary and sufficient condition for a matrix to be scalar is that its minimal equation is of degree :
(A) 4
(B) 3
(C) 2
(D) 1
12. Which of the following is true for any three square matrices P, Q, R each of order n ?
(A) $\operatorname{Tr}(\mathrm{PQR})=\operatorname{Tr}(\mathrm{QRP})$
(B) $\operatorname{Tr}(P R Q)=\operatorname{Tr}(R Q P)$
(C) $\operatorname{Tr}(\mathrm{RQP})=\operatorname{Tr}(\mathrm{RPQ})$
(D) $\operatorname{Tr}(R P Q)=\operatorname{Tr}(Q R P)$
13. Which of the following is true for a square matrix A of order n whose rank is less than n ?
(A) $|\mathrm{A}|=0$
(B) The columns of A are linearly dependent
(C) The rows of A are linearly dependent
(D) All of these
14. The value of ' a ' for which the system of equations $x+2 y+3 z=a x, 3 x+y+2 z=a y, 2 x+3 y+z=a z$ have non-zero solutions is :
(A) $\mathrm{a}=2$
(B) $\mathrm{a}=4$
(C) $a=6$
(D) $a=1$
15. The number of linearly indpendent solutions of the equation $x+y+z+t=1$ is :
(A) 2
(B) 3
(C) 4
(D) 5
16. Which of the following is not a normal vector?
(A) $\left[\begin{array}{c}1 \\ \mathrm{i} \\ 1-\mathrm{i}\end{array}\right]$
(B) $\left[\begin{array}{c}\frac{2}{3} \\ \frac{2}{3} \\ \frac{1}{3}\end{array}\right]$
(C) $\left[\begin{array}{c}\sin \theta \\ -\cos \theta \\ 0\end{array}\right]$
(D) $\left[\begin{array}{c}\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}}\end{array}\right]$
17. Which of the following is the solution of the differential 20. Which of the following is the general solution of the equation $\frac{d y}{d x}+x \sin 2 y=x^{3} \cos ^{2} y$?
(A) $\tan \mathrm{x}=\frac{1}{2}\left(\mathrm{y}^{2}-1\right)+\mathrm{ce}^{-\mathrm{y}^{2}}$
(B) $\tan \mathrm{y}=\frac{1}{2}\left(\mathrm{x}^{2}-1\right)+\mathrm{ce}^{-\mathrm{x}^{2}}$
(C) $\tan \mathrm{y}=\frac{1}{2}\left(\mathrm{x}^{2}-1\right) \mathrm{e}^{-\mathrm{x}^{2}}+\mathrm{c}$
(D) $\tan \mathrm{x}=\frac{1}{2}\left(\mathrm{y}^{2}-1\right) \mathrm{e}^{-\mathrm{y}^{2}}+\mathrm{c}$
18. The solution of the differential equation

$$
x d y+y d x+\frac{x d y-y d x}{x^{2}+y^{2}}=0 \text { is: }
$$

(A) $x+y \tan ^{-1} \frac{y}{x}=c$
(B) $y+x \tan ^{-1} \frac{x}{y}=c$
(C) $x y+\tan ^{-1} \frac{y}{x}=c$
(D) $x y+\tan ^{-1} \frac{x}{y}=c$
19. The particular integral of the differential equation

$$
\left(D^{2}+5 D+4\right) y=x^{2}+7 x+9 \text { is : }
$$

(A) $\frac{1}{4}\left(x^{2}+\frac{9}{2} \mathrm{x}\right)$
(B) $\frac{1}{4}\left(\mathrm{x}^{2}+\frac{23}{8}\right)$
(C) $\frac{1}{4}\left(\mathrm{x}^{2}+\frac{9}{2} \mathrm{x}+\frac{8}{23}\right)$
(D) $\frac{1}{4}\left(\mathrm{x}^{2}+\frac{9}{2} \mathrm{x}+\frac{23}{8}\right)$
25. The value of $\iint_{R} e^{\frac{y}{x}} d y d x$, where $R=\{(x, y)$, $\left.0<x<1,0<y<x^{2}\right\}$ is
(A) 1
(B) 2
(C) e
(D) $\frac{1}{2}$
26. If $\overrightarrow{\mathrm{r}}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}$ and $\mathrm{r}=|\overrightarrow{\mathrm{r}}|$, then $\operatorname{div}\left(\mathrm{r}^{\mathrm{n}} \overrightarrow{\mathrm{r}}\right)=$
(A) $(\mathrm{n}+1) \mathrm{r}^{\mathrm{n}}$
(B) $(\mathrm{n}+2) \mathrm{r}^{\mathrm{n}+1}$
(C) $(\mathrm{n}+3) \mathrm{r}^{\mathrm{n}+2}$
(D) $(\mathrm{n}+3) \mathrm{r}^{\mathrm{n}}$
27. Which of the following is true for the function

$$
f(x, y)=\sqrt{|x y|} ?
$$

(A) $f(x, y)$ is differentiable at the origin
(B) $f(x, y)$ is, not differentiable at the origin
(C) The partial derivatives $\mathrm{f}_{x}, \mathrm{f}_{\mathrm{y}}$ are continuous at the origin
(D) None of the above
28. Which of the following is true for the function

$$
f(x, y)=x^{2}-3 x y^{2}+2 y^{4} ?
$$

(A) $f(x, y)$ has a maximum value at the origin
(B) $f(x, y)$ has a minimum value at the origin
(C) $f(x, y)$ has neither a maximum value nor a minimum value at the origin
(D) None of the above
29. If $f(x)$ is bounded and integrable on $[a, b]$ and $f(x) \geq 0, \forall x \in[a, b]$, then :
(A) $\int_{a}^{b} f(x) d x \geq 0$ for $a \leq b$
(B) $\int_{a}^{b} f(x) d x \leq 0$ for $a \leq b$
(C) $\int_{a}^{b} f(x) d x \geq 0$ for $b \leq a$
(D) None of the above holds

HFO-20633-B
30. Which of the following is/are necessary and sufficient condition(s) for a bounded function f to be integrable on $[\mathrm{a}, \mathrm{b}]$?
(A) For any $\varepsilon>0$, there exists a partition P of $[\mathrm{a}, \mathrm{b}]$ such that $\mathrm{U}(\mathrm{P}, \mathrm{f})-\mathrm{L}(\mathrm{P}, \mathrm{f})<\varepsilon$.
(B) For any $\varepsilon>0$, there exists a partition P of $[\mathrm{a}, \mathrm{b}]$ and a number I lying between $\mathrm{L}(\mathrm{P}, \mathrm{f})$ and $U(P, f)$ such that :

$$
|\mathrm{U}(\mathrm{P}, \mathrm{f})-\mathrm{I}|<\varepsilon \text { and }|\mathrm{L}(\mathrm{P}, \mathrm{f})-\mathrm{I}|<\varepsilon .
$$

(C) For any $\varepsilon>0$, there exists a $\delta>0$ such that if $\mathrm{P}, \mathrm{P}^{*}$ are any two partitions of $[\mathrm{a}, \mathrm{b}]$ with mesh less than δ, then:

$$
\left|\mathrm{S}(\mathrm{P}, \mathrm{f})-\mathrm{S}\left(\mathrm{P}^{*}, \mathrm{f}\right)\right|<\varepsilon .
$$

(D) All the above
31. Which of the following is the value of $\int_{-1}^{1}(x+|x|) d x$?
(A) 0
(B) -1
(C) 1
(D) 2
32. Which of the following is true for the function fdefined on $[0,1]$ by :
$f(x)=0$, when x is irrational or zero $=1 / n$, when x is any non-zero rational number m / n in its lowest form.
(A) $f(x)$ is integrable on $[0,1]$ and the value of the integral is 0 .
(B) $f(x)$ is integrable on $[0,1]$ and the value of the integral is 1 .
(C) $f(x)$ is not integrable on $[0,1]$.
(D) None of the above
33. Which of the following is/are true for any group G of prime order?
(A) G is cyclic
(B) G is Abelian
(C) G has exactly two subgroups
(D) All the above
34. Which of the following is not true?
(A) Every group is a normal subgroup of itself.
(B) The center of every group is a normal subgroup of that group.
(C) Every subgroup of an Abelian group is normal.
(D) There is no non-Abelian group for which every subgroup is normal.
35. The exponential map from the group C of complex numbers with addition to the group C^{*} of non-zero complex numbers with multiplication is a homomorphism with kernel :
(A) $\{0\}$
(B) $\{1\}$
(C) $\{2 \mathrm{k} \pi \mathrm{i}, \mathrm{k} \in \mathrm{Z}\}$
(D) $\{\mathrm{k} \pi \mathrm{i}, \mathrm{k} \in \mathrm{Z}\}$
36. If $\mathrm{P}(\mathrm{S})$ is the power set of a non-empty set S with addition to be the symmetric difference of sets and multiplication to be intersection, then $\mathrm{P}(\mathrm{S})$ is :
(A) Adivisionring
(B) A Boolean ring
(C) A field
(D) None of these
37. If S and S^{*} are subspaces of a vector space X over the field F , which of the following is/are subspaces of X over F ?
(A) $\mathrm{S}+\mathrm{S}^{*}$
(B) $\mathrm{S} \cap \mathrm{S}^{*}$
(C) $\mathrm{L}\left(\mathrm{S} \cup \mathrm{S}^{*}\right)$
(D) All the above
38. Which of the following is a basis for the vector space C of complex numbers over itself?
(A) $\{0\}$
(B) $\{1\}$
(C) $\{1, \mathrm{i}\}$
(D) $\{i\}$
39. If T is a homomorphism from X to Y, where X and Y are vector spaces over the same field F , with kernel K , then T is an isomorphism if and only if $\mathrm{K}=$
(A) $\{0\}$
(B) Φ
(C) X
(D) Y
40. If X and Y are finite-dimensional vector spaces over the same field F and f is a homomorphism from X onto Y with kernel K , then :
(A) $\operatorname{dim}(\mathrm{X})=\operatorname{dim}(\mathrm{Y})$
(B) $\operatorname{dim}(\mathrm{X})=\operatorname{dim}(\mathrm{Y})+\operatorname{dim}(\mathrm{K})$
(C) $\operatorname{dim}(\mathrm{Y})=\operatorname{dim}(\mathrm{X})+\operatorname{dim}(\mathrm{K})$
(D) $\operatorname{dim}(\mathrm{Y})=\operatorname{dim}(\mathrm{X}) / \operatorname{dim}(\mathrm{K})$
41. $\lim _{x \rightarrow 0} \frac{\sqrt{1+\mathrm{x}}-\sqrt{1-\mathrm{x}}}{\mathrm{x}}=$
(A) 0
(B) 1
(C) 2
(D) -1
42. Which of the following is true for the function:

$$
\begin{aligned}
f(x) & =e^{\frac{1}{(x-2)^{2}}}, x \neq 2 \\
& =0, x=2 ?
\end{aligned}
$$

(A) $f(x)$ is continuous at $x=2$
(B) $\mathrm{f}(\mathrm{x})$ has a discontinuity of first kind at $\mathrm{x}=2$
(C) $f(x)$ has a discontinuity of second kind at $x=2$
(D) None of the above
43. If $f(x)=x^{n-1}+e^{2 x}$, then $f^{n}(0)=$
(A) $(\mathrm{n}-1)!+2^{\mathrm{n}}$
(B) 2^{n}
(C) $(n-1)!+2^{n-1}$
(D) $2^{n}+1$
44. The coefficient of $(x-a)^{2}$, when $\log \sin x$ is expanded as a series in $(x-a)$, is :
(A) $\log \sin a$
(B) $\cot a$
(C) $\frac{1}{2} \operatorname{cosec}^{2} a$
(D) $-\frac{1}{2} \operatorname{cosec}^{2} a$
45. Which of the following is the pedal equation of the parabola $\frac{2 \mathrm{a}}{\mathrm{r}}=1-\cos \theta$?
(A) $\mathrm{p}^{2}=\mathrm{ar}$
(B) $\mathrm{r}^{2}=a p$
(C) $\mathrm{a}^{2}=\mathrm{pr}$
(D) $\mathrm{p}=\mathrm{ar}$
46. If $u=\cos ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, then $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=$
(A) $\frac{1}{2} \cos u$
(B) $\frac{1}{2} \cot u$
(C) $-\frac{1}{2} \cot u$
(D) $-\frac{1}{2} \cos u$
47. What is the radius of curvature of the circle $\mathrm{r}=\mathrm{a} \cos \theta$?
(A) a
(B) $\frac{\mathrm{a}}{2}$
(C) 2 a
(D) a^{2}
48. The equation of the hyperbola having $x+y-1=0$ and $x-y+2=0$ as its asymptotes and passing through the origin is:
(A) $x+y-1=2(x-y+2)$
(B) $(x+y-1)(x-y+2)+2=0$
(C) $(x+y-1)(x-y+2)=0$
(D) $(x+y-1)(x-y+2)-2=0$
49. The equation $\mathrm{z} \overline{\mathrm{z}}+(1+\mathrm{i}) \mathrm{z}+(1-\mathrm{i}) \overline{\mathrm{z}}=0$ represents:
(A) A straight line
(B) A circle
(C) Anellipse
(D) None of these
50. If $\sin \phi=\mathrm{i} \tan \theta$, then $\cos \theta+\mathrm{i} \sin \theta=$
(A) $\tan \frac{\phi}{2}$
(B) $\tan \left(\frac{\pi}{4}-\frac{\phi}{2}\right)$
(C) $\tan \left(\frac{\pi}{4}+\frac{\phi}{2}\right)$
(D) $\tan \phi$
51. The principal value of ${ }^{i}$ is:
(A) $\mathrm{e}^{\frac{\pi}{2}}$
(B) $\mathrm{e}^{-\frac{\pi}{2}}$
(C) e^{π}
(D) $\mathrm{e}^{-\pi}$
52. Which of the following is the imaginary part of $\sin ^{-1}(\cos \theta+i \sin \theta), 0<\theta<\frac{\pi}{2} ?$
(A) $\cos ^{-1} \sqrt{\sin \theta}$
(B) $\sin ^{-1} \sqrt{\cos \theta}$
(C) $\log (\sqrt{\sin \theta}+\sqrt{1+\sin \theta})$
(D) $\log (\sqrt{1+\sin \theta}-\sqrt{\sin \theta})$
53. When $x^{4}-3 x^{3}+4 x^{2}-6 x+7$ is divided by $x-1$, then the remainder is :
(A) 7
(B) 6
(C) 5
(D) 3
54. The equation which increases the roots of the equation $\mathrm{x}^{3}+6 \mathrm{x}^{2}+7 \mathrm{x}+2=0$ by 2 is :
(A) $\mathrm{x}^{3}-5 \mathrm{x}+4=0$
(B) $\mathrm{x}^{3}-4 \mathrm{x}+5=0$
(C) $\mathrm{x}^{3}-6 \mathrm{x}+7=0$
(D) $\mathrm{x}^{3}-7 \mathrm{x}+6=0$
55. The equation whose roots are 2 times the roots of the equation $x^{7}-5 x^{4}+13 x^{2}-11=0$ is :
(A) $\mathrm{x}^{7}-10 \mathrm{x}^{4}+52 \mathrm{x}^{2}-88=0$
(B) $\mathrm{x}^{7}-20 \mathrm{x}^{4}+52 \mathrm{x}^{2}-88=0$
(C) $\mathrm{x}^{7}-40 \mathrm{x}^{4}+208 \mathrm{x}^{2}-352=0$
(D) $x^{7}-40 x^{4}+416 x^{2}-1408=0$
56. For what value of k the roots of the equation $\mathrm{x}^{3}-6 \mathrm{x}+11 \mathrm{x}+\mathrm{k}=0$ are in A.P.?
(A) $k=4$
(B) $\mathrm{k}=5$
(C) $\mathrm{k}=-6$
(D) $\mathrm{k}=6$
57. If $x+y+z=1, x^{2}+y^{2}+z^{2}=2, x^{3}+y^{3}+z^{3}=3$, then $x^{5}+y^{5}+z^{5}=$
(A) 4
(B) 5
(C) 6
(D) 7
58. If α, β, γ are the roots of the equation
$x^{3}+2 x^{2}-3 x-1=0$, then the value of $\frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}+\frac{1}{\gamma^{3}}$ is :
(A) 42
(B) -42
(C) 24
(D) -36
59. If $\mathrm{G}^{2}+4 \mathrm{H}^{3}<0$, then the cubic equation $\mathrm{x}^{3}+3 \mathrm{Hx}+\mathrm{G}=0$ has :
(A) One real and two conjugate complex roots
(B) All the three roots real and two of them are equal
(C) All the three roots real and distinct
(D) No real roots
60. Which of the following is true for any zero ' a ' of the polynomial?

$$
z^{5}+z^{4}+z^{3}+z^{2}+z+1 ?
$$

(A) \mid a $\mid<1$
(B) $|\mathrm{a}|=1$
(C) \mid a $\mid>1$
(D) None of these

1. The value of $\int_{0}^{\frac{\pi}{6}} \sin ^{8} 3 \theta d \theta$ is :
(A) $\frac{3 \pi}{16}$
(B) $\frac{5 \pi}{32}$
(C) $\frac{64}{35}$
(D) $\frac{35 \pi}{768}$
2. The order and the degree of the differential equation

$$
\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}=k \frac{d^{2} y}{d x^{2}}
$$

are respectively :
(A) 2 and 1
(B) 1 and 2
(C) 2 and 2
(D) 1 and 1
3. The solution of the differential equation $y d x-x d y+3 x^{2} y^{2} e^{x^{3}} d x=0$ is :
(A) $x+y x^{3}=c y$
(B) $y+x x^{x^{3}}=c x$
(C) $x-y e^{x^{3}}=c y$
(D) $y-x e^{x^{3}}=c x$
4. The particular integral of the differential equation

$$
\left(D^{3}-6 D^{2}+11 D-6\right) y=e^{-2 x}+e^{-3 x}
$$

is :
(A) $-\frac{1}{120}\left(\mathrm{e}^{-2 x}+\mathrm{e}^{-3 \mathrm{x}}\right)$
(B) $-\frac{1}{120}\left(e^{-2 x}+3 e^{-3 x}\right)$
(C) $-\frac{1}{120}\left(2 e^{-2 x}+\mathrm{e}^{-3 \mathrm{x}}\right)$
(D) $\frac{1}{120}\left(2 \mathrm{e}^{-2 \mathrm{x}}+\mathrm{e}^{-3 \mathrm{x}}\right)$
5. If P and Q are non-singular square matrices of the same order, then $\operatorname{adj}(\mathrm{PQ})=$
(A) $\operatorname{adj}(\mathrm{P}) \cdot \operatorname{adj}(\mathrm{Q})$
(B) $\operatorname{adj}(Q) \cdot \operatorname{adj}(P)$
(C) $|\mathrm{PQ}| . \mathrm{I}$
(D) $|\mathrm{PQ}| \mathrm{PQ}$
6. Which of the following is not true for any non-singular matrix M with transpose M^{\prime} and inverse M^{-1} ?
(A) $\left|\mathrm{M}^{\prime}\right|=|\mathrm{M}|$
(B) $\mathrm{M}^{-1}=\mathrm{M}^{\prime}$
(C) $\left(\mathrm{M}^{-1}\right)^{\prime}=\left(\mathrm{M}^{-1}\right.$
(D) $\operatorname{Tr}\left(\mathrm{M}^{\prime}\right)=\operatorname{Tr}(\mathrm{M})$
7. If $\mathrm{P}=\left[\begin{array}{cc}2 & -1 \\ -2 & 1\end{array}\right]$, then $\mathrm{P}^{\mathrm{S}}=$
(A) 3 P
(B) 9 P
(C) 27 P
(D) 81 P
8. The rank of the matrix $\left[\begin{array}{cccc}2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7\end{array}\right]$ is :
(A) 4
(B) 3
(C) 5
(D) 2
9. The number of linearly independent solutions of the equation $x+y+z=1$ is :
(A) 4
(B) 3
(C) 1
(D) 2
10. Which of the following is not true?
(A) The columns of a non-singular matrix are linearly independent
(B) The rows of a matrix A of order $m \times n$ are linearly dependent iff rank of A is less than m
(C) A square matrix A of order n is non-singular iff its rank is less than n
(D) For any matrices of suitable order, $\operatorname{rank}(\mathrm{ABC}) \leq \operatorname{rank}(\mathrm{AB})$
11. For what values of m and n, the system of equations $x+y+z=6, x+2 y+3 z=10$ and $x+2 y+m z=n$ have no solution?
(A) $\mathrm{m}=3, \mathrm{n}=10$
(B) $\mathrm{m} \neq 3, \mathrm{n}=10$
(C) $\mathrm{m}=3, \mathrm{n} \neq 10$
(D) $\mathrm{m} \neq 3, \mathrm{n} \neq 10$
12. For any orthogonal matrix P :
(A) $\mathrm{P}^{-1}=\mathrm{P}$
(B) $\mathrm{PP}^{\prime}=\mathrm{P}$
(C) $\mathrm{PP}^{\prime}=\mathrm{P}^{\prime}$
(D) $\mathrm{p}^{-1}=\mathrm{P}^{\prime}$
13. For what values of m does the equation $2 x^{3}-9 x^{2}+12 x+m=0$ have two equal roots?
(A) $\mathrm{m}=-1,-4$
(B) $\mathrm{m}=-4,-3$
(C) $\mathrm{m}=-4,-5$
(D) $\mathrm{m}=-1,-3$
14. If α, β, γ are the roots of the equation $\mathrm{x}^{3}-6 \mathrm{x}^{2}+12 \mathrm{x}-8=0$, then the equation whose roots are $\alpha-2, \beta-2, \gamma-2$ is :
(A) $\mathrm{x}^{3}+6 \mathrm{x}^{2}-12 \mathrm{x}+8=0$
(B) $x^{3}-8 x^{2}+12 x-6=0$
(C) $x^{3}=0$
(D) $x^{3}+6=0$
15. If α, β, γ are the roots of the equation $x^{3}-x^{2}+8 x-6=0$, then the equation whose roots are $\alpha^{2}, \beta^{2}, \gamma^{2}$ is :
(A) $x^{3}+15 x^{2}+52 x-36=0$
(B) $\mathrm{x}^{3}-15 \mathrm{x}^{2}-52 \mathrm{x}+36=0$
(C) $\mathrm{x}^{3}-15 \mathrm{x}^{2}+52 x-36=0$
(D) $x^{3}+15 x^{2}-52 x+36=0$
16. The condition that the roots of the equation $\mathrm{x}^{3}-\mathrm{px}+\mathrm{qx}-\mathrm{r}=0$ may be in G.P. is :
(A) $\mathrm{pq}=\mathrm{r}$
(B) $\mathrm{pr}=\mathrm{q}$
(C) $2 \mathrm{p}^{3}-9 \mathrm{pq}+27 \mathrm{r}=0$
(D) $\mathrm{p}^{3} \mathrm{r}=\mathrm{q}^{3}$
17. If α, β, γ are the roots of the equation $x^{3}+2 x^{2}-3 x-1=0$, then $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}+\frac{1}{\gamma^{2}}=$
(A) 41
(B) -42
(C) -52
(D) 23
18. The number of imaginary roots of the equation $x^{7}-3 x^{4}+2 x^{3}-1=0$ is at least :
(A) 2
(B) 3
(C) 4
(D) 5
19. Which of the following is true for any root ' a ' of 23 . Which of the following series is not convergent? the equation $z^{4}+z^{2}+1=0$?
(A) $|a|=1$
(B) \mid a $\mid<1$
(C) $|a|>1$
(D) None of these
(A) $\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$
(B) $\sum_{n=0}^{\infty}\left\{\left(n^{3}+1\right)^{\frac{1}{3}}-n\right\}$
20. The sum of the cubes of the roots of the equation $x^{3}-6 x^{2}+11 x-6=0$ is :
(A) 6
(B) 11
(C) 36
(D) $\sum_{n=1}^{\infty} \sin \frac{1}{n^{2}}$
(D) 121
21. Which of the following is not true ? 24. The series $\sum_{n=1}^{\infty} \frac{1^{2} \cdot 3^{2} \ldots \ldots .(2 n-1)^{2}}{2^{2} \cdot 4^{2} \ldots . .(2 n)^{2}} x^{n-1}, x>0$
(A) If A and B are countable sets, then $A \cup B$ is also a countable set
(B) If A is a countable set, then every subset of A is also countable
(C) If A is an uncountable set, then every subset of A is also uncountable
(D) If A and B are countable sets, then so is their Cartesian product
22. Which of the following is not true for any two bounded sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ of non-negative real numbers ?
(A) $\left\lfloor\underline{\lim }\left(\mathrm{a}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}}\right) \leq \underline{\lim }\left(\mathrm{a}_{\mathrm{n}}\right) \cdot \underline{\lim }\left(\mathrm{b}_{\mathrm{n}}\right)\right.$
(B) $\lim _{n} \cdot \operatorname{limb}_{n} \leq \varlimsup\left(a_{n} b_{n}\right)$
(C) $\overline{\lim }\left(a_{n} b_{n}\right) \leq \lim _{n} . . \overline{\lim } b_{n}$
(D) $\varliminf\left(a_{n} b_{n}\right) \leq \varliminf_{n} a_{n} \cdot \lim _{n}$
converges for:
(A) $x>1$
(B) $x=1$
(C) $x<1$
(D) None of these
25. The value of $\int_{0}^{4}[x] d x$ is :
(A) 4
(B) 8
(C) 6
(D) 17
26. Which of the following is true for the function
$f(x)=x$, when x is rational
$=-\mathrm{x}$, when x is irrational
on $[0,1]$?
(A) f is integrable, but $|f|$ is not integrable
(B) $|f|$ is integrable, but f is not integrable
(C) f and $|f|$ are both integrable
(D) Neither f nor $|f|$ is integrable
27. Which of the following is true for any two bounded and integrable functions f and g on $[a, b]$?
(A) $\mathrm{f}+\mathrm{g}$ is integrable
(B) $\mathrm{f}-\mathrm{g}$ is integrable
(C) f.g is integrable
(D) $\frac{f}{g}$ is integrable
28. Which of the following is not true for any refinement P^{*} of a partition P of $[a, b]$ and any bounded function f defined on $[\mathrm{a}, \mathrm{b}]$?
(A) $\mathrm{L}(\mathrm{P}, \mathrm{f}) \leq \mathrm{L}\left(\mathrm{P}^{*}, \mathrm{f}\right)$
(B) $\mathrm{U}(\mathrm{P}, \mathrm{f}) \leq \mathrm{U}\left(\mathrm{P}^{*}, \mathrm{f}\right)$
(C) $\mathrm{L}\left(\mathrm{P}^{*}, \mathrm{f}\right) \leq \mathrm{U}\left(\mathrm{P}^{*}, \mathrm{f}\right)$
(D) $\mathrm{U}\left(\mathrm{P}^{*}, \mathrm{f}\right) \leq \mathrm{U}(\mathrm{P}, \mathrm{f})$
29. What is the value of $\Gamma\left(\frac{5}{2}\right)$?
(A) $3 \sqrt{\pi}$
(B) $3 \frac{\sqrt{\pi}}{4}$
(C) $3 \frac{\sqrt{\pi}}{2}$
(D) $\frac{\sqrt{\pi}}{2}$
30. The value of $\iiint_{A} e^{x+y+z} d x d y d z$, where 34. Which of the following functions from R to R is a
permutation of R ? $A=\{(x, y, z), 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1\}$ is :
(A) $f(x)=x+1$
(A) e^{2}
(B) e^{3}
(C) $(e-1)^{2}$
(D) $(\mathrm{e}-1)^{3}$
31. The value of $\iint_{A} \frac{d x d y}{\sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)}}$, where $A=\{(x, y), 0 \leq x \leq 1,0 \leq y \leq 1\}$, is :
(A) $\frac{\pi^{2}}{4}$
(B) $\frac{\pi^{2}}{2}$
(C) $\frac{\pi^{2}}{3}$
(D) $\frac{\pi^{2}}{8}$
32. If $r=\sqrt{x^{2}+y^{2}+z^{2}}$, then $\nabla^{2}\left(r^{n}\right)=$
(A) $n r^{n-2}$
(B) $(\mathrm{n}+1) \mathrm{r}^{\mathrm{n}-2}$
(C) $\mathrm{n}(\mathrm{n}+1) \mathrm{r}^{\mathrm{n}-1}$
(D) $n(n+1) r^{n-2}$
33. Which of the following is not true?
(A) Every group is a subgroup of itself
(B) Every group has exactly two improper subgroups
(C) Every cyclic group is abelian
(D) Every group of prime order is simple
(B) $g(x)=x^{2}$
(C) $h(x)=e^{x}$
(D) None of these
35. Which of the following is not a homomorphism?
(A) $\phi: F \rightarrow R$ defined by $\phi(f)=3 f, f \in F$, where F is the additive group of all functions mapping R into R and R is the additive group of all real numbers
(B) $\phi: M_{n} \rightarrow R$ defined by $\phi(A)=\operatorname{Tr}(A), A \in M_{n}$, where M_{n} is the additive group of all $n \times n$ matrices with real entries and R is the additive group of all real numbers
(C) $\phi: F \rightarrow R^{*}$ defined by $\phi(f)=\int_{0}^{1} f(x) d x, f \in F$, where F is the multiplicative group of all continuous functions from R into R that are non-zero at every $x \in R$ and R^{*} is the multiplicative group of all non-zero real numbers
(D) $\phi: R^{*} \rightarrow R^{*}$ defined by $\phi(x)=|x|, x \in R^{*}$, where R^{*} is the multiplicative group of all non-zero real numbers
36. Which of the following is a sufficient condition for a ring R to be commutative ?
(A) $a^{2}=a, \forall a \in R$
(B) $a^{3}=a, \forall a \in R$
(C) Both (A) and (B)
(D) Neither (A) nor (B)
37. Which of the following is/are true in a vector space V over the field F ?
(A) $a x=0_{v} \Rightarrow a=0_{F}$ or $x=0_{v}$
(B) $a .0_{v}=0_{v}$
(C) $0_{F} \cdot \mathrm{X}=0_{V}$
(D) All of these
38. If P and Q are subspaces of a vector space V_{F}, which of the following is not a subspace of V_{F} ?
(A) $P \cap Q$
(B) $P \cup Q$
(C) $P+Q$
(D) $a P+b Q, a, b \in F$
39. The dimension of the vector space C of complex numbers over the field R of real numbers is :
(A) 1
(B) 2
(C) 3
(D) None of these
40. If V_{F} is a finite-dimensional vector space of dimension n and k is the kernel of a homomorphism from V_{F} onto F_{F}, then the dimension of the quotient space $\frac{\mathrm{V}}{\mathrm{K}}$ is equal to :
(A) 0
(B) 1
(C) n
(D) None of these
41. If $f(x) \rightarrow 0$ as $x \rightarrow 0$, then $\lim _{x \rightarrow 0} \frac{e^{f(x)}-1}{f(x)}=$
(A) 0
(B) 1
(C) e
(D) -1
42. Which of the following is a point of discontinuity 45. The angle of intersection of the curves $\mathrm{r}=\mathrm{a} \cos \theta$ of the second kind of the function
$\mathrm{f}(\mathrm{x})=1, \mathrm{x}=0$
$=x+\frac{1}{2}, 0<x<\frac{1}{2}$

$$
=\frac{1}{2}, x=\frac{1}{2}
$$

(A) $x=0$
(B) $x=\frac{1}{2}$
(C) $x=1$
(D) None of these
43. The coefficient of $\left(x-\frac{\pi}{2}\right)^{4}$, when $\sin x$ is expanded as a Taylor series in $\left(\mathrm{x}-\frac{\pi}{2}\right)$, is :
(A) 1
(B) $-\frac{1}{2}$
(C) $\frac{1}{24}$
(D) $\frac{1}{720}$
44. If $2 y=x\left(1+y_{1}\right)$, then $y_{3}=$
(A) $x^{2}+y^{2}$
(B) $x^{2}-y^{2}$
(C) 0
(D) $x+y$ and $\mathrm{r}=\mathrm{a}(1-\cos \theta)$ is :
(A) $\frac{\pi}{3}$
(B) $\frac{2 \pi}{3}$

$$
=x+\frac{1}{2}, \frac{1}{2} \leq x<1
$$

(C) $\frac{3 \pi}{2}$

$$
=0, x=1 ?
$$

(D) $\frac{5 \pi}{6}$
46. Which of the following is true for the function
$u=\sin ^{-1}\left(\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right)$?
(A) $\frac{\partial u}{\partial x}=-\frac{\partial u}{\partial y}$
(B) $\frac{\partial u}{\partial x}=-\frac{x}{y} \frac{\partial u}{\partial y}$
(C) $\frac{\partial u}{\partial x}=-\frac{y}{x} \frac{\partial u}{\partial y}$
(D) $\frac{\partial u}{\partial x}=-x y \frac{\partial u}{\partial y}$
47. The maximum value of the radius of curvature of the ellipse

$$
\mathrm{p}^{2}=\mathrm{a}^{2} \cos ^{2} \psi+\mathrm{b}^{2} \sin ^{2} \psi
$$

is :
(A) $a b$
(B) $\frac{b^{2}}{a}$
(C) $\frac{a^{2}}{b}$
(D) $\frac{a}{b}$
48. Which of the following is not an asymptote of the $52 . \sin \left(\log i^{i}\right)=$ curve

$$
x^{3}+2 x^{2} y-x y^{2}-2 y^{3}+4 y^{2}+2 x y+y-1=0 ?
$$

(A) $y=x+1$
(B) $y=-x+1$
(C) $y=-\frac{1}{2} x$
(D) $x+y=0$
49. The equation $|z+1|+|z-1|=4$ represents in the z-plane :
(A) A circle
(B) An ellipse
(C) A square
(D) A rectangle
50. If $x_{r}=\cos \frac{\pi}{2^{r}}+i \sin \frac{\pi}{2^{r}}, r=1,2,3, \ldots \ldots$, then $\prod_{r=1}^{\infty} \mathrm{x}_{\mathrm{r}}=$
(A) 1
(B) $\frac{\pi}{2}$
(C) π
(D) -1
51. If $x+i y=\cosh (u+i v)$, then :
(A) $\frac{x^{2}}{\cosh ^{2} u}+\frac{y^{2}}{\sinh ^{2} u}=1$
(B) $\frac{x^{2}}{\cosh ^{2} u}-\frac{y^{2}}{\sinh ^{2} u}=1$
(C) $\frac{x^{2}}{\sinh ^{2} u}+\frac{y^{2}}{\cosh ^{2} u}=1$
(D) $\frac{x^{2}}{\sinh ^{2} u}-\frac{y^{2}}{\cosh ^{2} u}=1$
(A) 1
(B) 0
(C) -1
(D) i
53. If the point (α, β) lies outside the parabola $y^{2}=4 a x$, then $\beta^{2}-4 a \alpha$ is :
(A) Zero
(B) Positive
(C) Negative
(D) None of these
54. The eccentricity of the ellipse

$$
4 x^{2}+y^{2}-8 x+2 y+1=0
$$

is :
(A) $\sqrt{3}$
(B) $\frac{\sqrt{3}}{2}$
(C) $2 \sqrt{3}$
(D) $\frac{2}{\sqrt{3}}$
55. The line $\mathrm{l} x+\mathrm{my}+\mathrm{n}=0$ will touch the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ if $:$
(A) $a^{2} l^{2}+b^{2} m^{2}=n^{2}$
(B) $a l^{2}+b m^{2}=n^{2}$
(C) $l^{2}+m^{2}=n^{2}$
(D) $\mathrm{a}^{2} l^{2}-\mathrm{b}^{2} \mathrm{~m}^{2}=\mathrm{n}^{2}$
56. The center of the conic

$$
21 x^{2}-6 x y+29 y^{2}+6 x-58 y-151=0
$$

is :
(A) $(1,0)$
(B) $(0,0)$
(C) $(0,1)$
(D) $(1,1)$
57. The radius of the circle in which the plane $x+2 y-z=4$ cuts the sphere $x^{2}+y^{2}+z^{2}-x+z-2=0$ is:
(A) $\frac{3}{\sqrt{6}}$
(B) $\sqrt{\frac{5}{2}}$
(C) 3
(D) 1
58. The semi-vertical angle of the right circular cone having its vertex at the origin and passing through the circle $x^{2}+z^{2}=25, y=4$ is :
(A) $\tan ^{-1}\left(\frac{5}{4}\right)$
(B) $\tan ^{-1}\left(\frac{4}{5}\right)$
(C) $\tan ^{-1}(5)$
(D) $\tan ^{-1}(4)$
59. The locus of the tangent lines to a sphere which are parallel to a given line is :
(A) A sphere
(B) A cone
(C) A cylinder
(D) None of these
60. The surface represented by $\frac{x^{2}}{2}-\frac{y^{2}}{3}=z$ is :
(A) An elliptic paraboloid
(B) A hyperbolic paraboloid
(C) A hyperboloid of one sheet
(D) A hyperboloid of two sheets

Sr. No.

ENTRANCE TEST-2017

SCHOOL OF PHYSICAL AND MATHEMATICAL SCIENCES

MATHEMATICS

Total Questions : 60
Time Allowed : 70 Minutes

Question Booklet Series
A
Roll No. :

Instructions for Candidates :

1. Write your Roll Number in the space provided at the top of this page of Question Booklet and fill up the necessary information in the spaces provided on the OMR Answer Sheet.
2. OMR Answer Sheet has an Original Copy and a Candidate's Copy glued beneath it at the top. While making entries in the Original Copy, candidate should ensure that the two copies are aligned properly so that the entries made in the Original Copy against each item are exactly copied in the Candidate's Copy.
3. All entries in the OMR Answer Sheet, including answers to questions, are to be recorded in the Original Copy only.
4. Choose the correct / most appropriate response for each question among the options $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D and darken the circle of the appropriate response completely. The incomplete darkened circle is not correctly read by the OMR Scanner and no complaint to this effect shall be entertained.
5. Use only blue/black ball point pen to darken the circle of correct/most appropriate response. In no case gel/ink pen or pencil should be used.
6. Do not darken more than one circle of options for any question. A question with more than one darkened response shall be considered wrong.
7. There will be 'Negative Marking' for wrong answers. Each wrong answer will lead to the deduction of 0.25 marks from the total score of the candidate.
8. Only those candidates who would obtain positive score in Entrance Test Examination shall be eligible for admission.
9. Do not make any stray mark on the OMR sheet.
10. Calculators and mobiles shall not be permitted inside the examination hall.
11. Rough work, if any, should be done on the blank sheets provided with the question booklet.
12. OMR Answer sheet must be handled carefully and it should not be folded or mutilated in which case it will not be evaluated.
13. Ensure that your OMR Answer Sheet has been signed by the Invigilator and the candidate himself/herself.
14. At the end of the examination, hand over the OMR Answer Sheet to the invigilator who will first tear off the original OMR sheet in presence of the Candidate and hand over the Candidate's Copy to the candidate.
15. Which of the following are the points of discontinuity of the function $f(x)$ in the interval $[0,1]$ where

$$
\begin{aligned}
f(x) & =2, \text { when } x=0 \\
& =4 x^{2}+1,0<x<1 / 2 \\
& =2 x+1,1 / 2 \leq x \leq 1 ?
\end{aligned}
$$

(A) $\mathrm{x}=0$ and $\mathrm{x}=1 / 2$ only
(B) $\mathrm{x}=1 / 2$ only
(C) $\mathrm{x}=0$ only
(D) None of the above
2. What is the coefficient of x^{2} in the power series expansion of $\log \left(1+\mathrm{e}^{\mathrm{x}}\right)$?
(A) $\frac{1}{8}$
(B) $\frac{1}{4}$
(C) 2
(D) None of the above
3. Which of the following is the kth derivative of the function $y=\operatorname{Sin} x \operatorname{Cos} x$?
(A) $y_{k}=2^{k} \operatorname{Sin}(x+k \pi)$
(B) $\mathrm{y}_{\mathrm{k}}=2^{\mathrm{k}} \operatorname{Cos}(\mathrm{x}+\mathrm{k} \pi)$
(C) $y_{k}=2^{k-1} \operatorname{Cos}\left(2 x+\frac{k \pi}{2}\right)$
(D) $y_{k}=2^{k-1} \operatorname{Sin}\left(2 x+\frac{k \pi}{2}\right)$
4. What is value of $\lim _{x \rightarrow 0} \frac{\operatorname{Sin} x-x+2 x^{3}}{x^{3}}$?
(A) 2
(B) $\frac{13}{6}$
(C) $\frac{5}{3}$
(D) $\frac{11}{6}$
5. If S is the length of an arc of the curve $f(r, Q)=0$, then which of the following is true?
(A) $\left(\frac{\mathrm{dS}}{\mathrm{dQ}}\right)^{2}=1+\left(\frac{\mathrm{dQ}}{\mathrm{dr}}\right)^{2}$
(B) $\cdot\left(\frac{d S}{d Q}\right)^{2}=1+r^{2}\left(\frac{d r}{d Q}\right)^{2}$
(C) $\left(\frac{d S}{d Q}\right)^{2}=r^{2}\left(\frac{d r}{d Q}\right)^{2}$
(D) None of the above
6. If $u=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$, then for which of the following value of $f(u)$,

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=f(u) ?
$$

(A) $\sin u$
(B) $\tan u$
(C) $1 / 2 \sin 2 u$
(D) $1 / 2 \tan 2 u$
7. How many asymptotes does the curve $\mathrm{y}^{2}=\theta \mathrm{x}$ have ?
(A) None
(B) One
(C) Two
(D) More than two
8. How many double points are on the curve ?

$$
x^{4}+y^{3}+2 x^{3}+3 y^{2}=0 ?
$$

(A) Four
(B) Three
(C) Two
(D) One
9. Let Z_{1} and Z_{2} be two complex numbers, then

$$
\left|Z_{1}+Z_{2}\right|^{2}=\left|Z_{1}\right|^{2}+\left|Z_{2}\right|^{2}
$$

if and only if
(A) $\mathrm{Z}_{1}-\mathrm{Z}_{2}$ is purely imaginary
(B) $\frac{\mathrm{Z}_{1}}{\mathrm{Z}_{2}}$ is purely imaginary
(C) $\frac{\mathrm{Z}_{1}}{\mathrm{Z}_{2}}$ is purely real
(D) None of the above
10. Which of the following is the value of $(1+\omega)^{3}$ where :

$$
\omega=\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right) ?
$$

(A) -i
(B) i
(C) -1
(D) 1
11. Which of the following is the real part of $\cos ^{-1}(i)$?
(A) $\frac{\pi}{2}$
(B) $\frac{\pi}{4}$
(C) π
(D) None of the above
12. What is the sum to n terms of the series

$$
\cos \theta+\cos 3 \theta+\cos 50+\ldots \ldots . ?
$$

(A) $\frac{\cos 2 n \theta}{2 \sin \theta}$
(B) $\frac{\sin 2 n \theta}{2 \sin \theta}$
(C) $\frac{\cos n \theta}{\sin \theta}$
(D) $\frac{\sin n \theta}{\cos \theta}$
13. For what value of k, the line $y=3 x+k$ touches the parabola $y^{2}=2 x$?
(A) $\frac{2}{3}$
(B) $\frac{3}{2}$
(C) $\frac{5}{6}$
(D) None of the above
14. If CP is an equi-conjugate semi-diameter of an ellips

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

then which of the following is the length of CP ?
(A) $\frac{a+b}{2}$
(B) $\frac{\mathrm{ab}}{2}$
(C) $\sqrt{\frac{a^{2}+b^{2}}{2}}$
(D) $\sqrt{a^{2}+b^{2}}$
15. If a circle and the rectangular hyperbola $x y=c^{2}$ mee in the four points $\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}, \mathrm{k}_{4}$, then what is the valu of the product $\mathrm{k}_{1} \mathrm{k}_{2} \mathrm{k}_{3} \mathrm{k}_{4}$?
(A) c^{4}
(B) 1
(C) 2
(D) None of the above
16. Which of the following is the centre of the conic

$$
x^{2}-5 x y+y^{2}+8 x-12 y+15=0 ?
$$

(A) $(-4,0)$
(B) $(0,4)$
(C) $\left(-4,-\frac{16}{3}\right)$
(D) None of the above
17. For what value of the constant k, the two spheres

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}+6 y+2 z+k=0 \text { and } \\
& x^{2}+y^{2}+z^{2}+6 x+8 y+4 z+20=0 ?
\end{aligned}
$$

(A) -6
(B) 4
(C) 8
(D) None of the above
18. What is the general equation of the cone of second degree which possess through the axes?
(A) $a x^{2}+b y^{2}+c z^{2}=0$
(B) $\quad f y z+g z x+h x y=0$
(C) $a x^{2}+b y^{2}+c z^{2}=x y+y z+z x$
(D) None of the above
19. Which of the following is the equation of cylinder which intersects the curve

$$
x^{2}+y^{2}+z^{2}=1, u x+v y+w z=d
$$

and whose generator are parallel to the axis of x ?
(A) $u x^{2}+v y^{2}+w z^{2}=1$
(B) $(u+v) x^{2}+(v+w) y^{2}+(w+u) z^{2}=d$
(C) $u^{2} x y+v^{2} y z+w^{2} z x=d$
(D) None of the above
20. Tangent planes are drawn to the conicoid $a x^{2}+b y^{2}+c z^{2}=1$ through the point (α, β, γ), then the perpendiculars to them from origin generate the conc. :
(A) $(\alpha x+\beta y+\gamma z)^{2}=\left(\frac{x^{2}}{a}+\frac{y^{2}}{b}+\frac{z^{2}}{c}\right)$
(B) $(a x y+b y z+c z x)^{2}=1$
(C) $(a x+b y+c z)^{2}=(\alpha x y+\beta y z+\gamma z x)^{2}$
(D) None of the above
21. For which of the following values of $\psi(x)$,

$$
\int \tan ^{5} x d x-\frac{\tan ^{4} x}{4}=\psi(x) ?
$$

(A) $\quad \log \sec x+\tan ^{2} x$
(B) $\log \sec x-1 / 2 \tan ^{2} x$
(C) $x-\tan x$
(D) $\tan ^{2} x-\log \sec x$
22. Which of the following is the value of

$$
\frac{1}{(D-2)^{2}}\left(x^{3}\right) ?
$$

(A) $x^{3}-3 x^{2}+9 x-3$
(B) $\frac{1}{8}\left(2 \mathrm{x}^{3}+3 \mathrm{x}^{2}-9 \mathrm{x}+8\right)$
(C) $\frac{1}{8}\left(2 x^{3}+6 x+9 x+6\right)$
(D) None of the above
23. Which of the following is the solution of differential equation

$$
y=2 p x+y^{2} p^{3}
$$

(A) $\mathrm{y}^{2}=\mathrm{cx}+\frac{\mathrm{c}^{3}}{8}$
(B) $y=2 c x+c^{3} y^{2}$
(C) $\mathrm{y}=2 \mathrm{cx}^{2}+\mathrm{c}^{3}$
(D) None of the above
24. Let $P_{n}(x)$ denote the Legendre polynomials for $\mathrm{n}=0,1,2, \ldots$, then for which of following values of the pair (k, ℓ)
(A) $\begin{aligned} & (2 n+1) x P_{n}(x)=k P_{n+1}(x)+\ell P_{n-1}(x) \text { ? } \\ & (2 n-1,2 n+1)\end{aligned}$
(B) $(\mathrm{n}-1, \mathrm{n}+1)$
(C) $(\mathrm{n}, \mathrm{n}-1)$
(D) $(\mathrm{n}+1, \mathrm{n})$
25. For what value of the pair (m, n), the matrix

$$
2 m\left[\begin{array}{ccc}
-1 & 1 & -1 \\
8 & -6 & 2 \\
-5 & n & -1
\end{array}\right]
$$

is the inverse of the matrix

$$
\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right] ?
$$

(A) $(3,1)$
(B) $(1,3)$
(C) $(-1,3)$
(D) $(-1,-3)$
26. Let $\mathrm{A}=\left[\begin{array}{cc}2 & -1 \\ -2 & 1\end{array}\right]$, then for what value of the integer $\mathrm{k}, \mathrm{A}^{10}=3^{\mathrm{k}} \mathrm{A}$?
(A) 9
(B) 6
(C) 3
(D) None of the above
27. What is the rank of the matrix

$$
\left[\begin{array}{cccc}
1 & 3 & 2 & 1 \\
3 & 1 & 4 & 2 \\
5 & 7 & 8 & 4 \\
7 & 5 & 10 & 5
\end{array}\right]
$$

(A) One
(B) Two
(C) Three
(D) Four
28. For which value of P , the vectors

$$
\left[\begin{array}{l}
7 \\
4 \\
6
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right],\left[\begin{array}{l}
8 \\
\mathrm{P} \\
3
\end{array}\right]
$$

are linearly dependent?
(A) 8
(B) 7
(C) -6
(D) 5
29. Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{5 \times 4}$ be a matrix of order 5×4, then the columns of A are linearly independent if and only if :
(A) $\mathrm{R}(\mathrm{A})=4$
(B) $\quad R(A)=5$
(C) $\mathrm{R}(\mathrm{A})<4$
(D) None of the above
30. How many linearly independent solutions does the of equations
$x+y-4 z-2 u=0,2 x-3 y+2 z+2 u=0$ have?
(A) 4
(B) 3
(C) 2
(D) None
31. Let A be a matrix of order 3×5 with rank of 1 Then how many linearly independent solution: the system of non-linear homogeneous eql $\mathrm{AX}=\mathrm{H}, \mathrm{H} \neq 0$, have ?
(A) 4
(B) 3
(C) 2
(D) None of the above
32. For which value of the pair (α, β), the matrix

$$
\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & 0 & \alpha \\
-\frac{1}{\sqrt{3}} & \beta & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}}
\end{array}\right]
$$

is an orthogonal matrix?
(A) $\left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{2}}\right)$
(B) $\left(\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{3}}\right)$
(C) $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{6}}\right)$
(D) None of the above
33. If α, β, γ are the roots of the equation

$$
x^{3}+9 x^{2}+23 x+15=0
$$

then which of the following is the value of

$$
\frac{1}{\alpha \beta}+\frac{1}{\beta \gamma}+\frac{1}{\gamma \alpha} ?
$$

(A) 5
(B) $\frac{23}{15}$
(C) $\frac{1}{4}$
(D) $\frac{1}{5}$
34. The roots of the equation

$$
28 x^{3}+39 x^{2}+12 x-1=0
$$

are in Harmonic progression. Which of the following is its mean root?
(A) 4
(B) $\frac{1}{4}$
(C) $\frac{1}{7}$
(D) None of the above
35. Which of the following is the equation whose roots are less than 2 than that of the equation

$$
x^{3}+4 x^{2}+7 x+8=0 ?
$$

(A) $y^{3}+10 y^{2}-35 y+36=0$
(B) $\mathrm{y}^{3}-10 \mathrm{y}^{2}+35 \mathrm{y}-30=0$
(C) $\mathrm{y}^{3}+6 \mathrm{y}^{2}+3 \mathrm{y}+30=0$
(D) $y^{3}+10 y^{2}+35 y+46=0$
36. Which of the following is the equation whose roots are the squares of the roots of the equation

$$
x^{3}-2 x^{2}-x+2=0 ?
$$

(A) $y^{3}+6 y^{2}+9 y+4=0$
(B) $\mathrm{y}^{3}+9 \mathrm{y}^{2}-6 y+4=0$
(C) $y^{3}-6 y^{2}+9 y-4=0$
(D) None of the above
37. What is the value of $\mathrm{S}_{3}=\alpha^{3}+\beta^{3}+\gamma^{3}$ where α, β, γ are the roots of the equation

$$
x^{3}-x^{2}+1=0 ?
$$

(A) 4
(B) 3
(C) -2
(D) None of the above
38. The cubic equation

$$
x^{3}+3 x+14=0
$$

has:
(A) All the three roots real and distinct
(B) One real and two conjugate imaginary roots
(C) All the three roots not only real but two of them are also equal
(D) None of the above
39. The equation

$$
x^{4}-5 x^{3}+7 x^{2}-5 x+6=0
$$

has:
(A) no negative root
(B) at least one negative root
(C) at least two negative roots
(D) None of the above
40. How many roots does the polynomial equation :
$4 z^{6}-3 z^{5}+3 z^{4}-2 z^{3}+2 z^{2}-2 z+1=0$ have within and on the circle $|z| \leq 1$?
(A) None
(B) Two
(C) Four
(D) Six
41. Which of the following statements are true ?
(A) The set of all integers is countable and set of all polynomial functions P_{n} with integer coefficients is countable
(B) The set of all integers is countable but set of all polynomial functions P_{n} with integer coefficients is not countable
(C) The set of all integers is not countable but se of all polynomial functions P_{n} with intege coefficients is countable
(D) None of the above
42. How many limit points does the sequence $\left\{\mathrm{s}_{\mathrm{n}}\right\}$ where

$$
S_{n}=(-1)^{n}\left\{\left(1+\frac{1}{\mathrm{n}}\right)\right\}, \mathrm{n} \in \mathrm{~N}
$$

have?
(A) None
(B) One
(C) Two
(D) More than two
43. Consider the series $\sum \frac{1}{\mathrm{n}^{3 \mathrm{k}}}$, then which of the following is true?
(A) The series converges for $\mathrm{k}<\frac{1}{3}$
(B) The series converges for $0<\mathrm{k}<\frac{1}{3}$
(C) The series diverges for $\mathrm{k}>\frac{1}{3}$
(D) The series diverges for $\mathrm{k} \leq \frac{1}{3}$
44. Let $f(x)=x^{2}, g(x)=\frac{1}{x}$ and $I=[-1,1]$, then
(A) $f(x)$ and $g(x)$ are both uniformly continuous on I
(B) $f(x)$ is uniformly continuous on I but $g(x)$ is not uniformly continuous on I
(C) $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are not both uniformly continuous on I
(D) $f(x)$ is not uniformly continuous on I but $g(x)$ is uniformly continuous on I
45. Consider the function

$$
f(x)=\left\{\begin{array}{lc}
0 & \text { when } x \text { is rational } \\
1 & \text { when } x \text { is irrational }
\end{array}\right.
$$

over the interval $[-1,2]$. If $U(P, f)$ is the upper Riemann sum of f relative to a partition P, then $U(P, f)=$
(A) 2
(B) 3
(C) 0
(D) None of these
46. Consider the two functions $f(x)$ and $g(x)$ defined by $f(x)= \begin{cases}3 & \text { when } x \neq 0 \\ 0 & \text { when } x=0\end{cases}$
$g(x)= \begin{cases}0 & \text { when } x \text { irrational or zero } \\ \frac{1}{q} & \text { when } x=p / q \text { is a non - zerorational }\end{cases}$ number and $\frac{p}{q}$ in lowest form
over the interval $\mathrm{I}=[0,1]$. Then which of the following is true?
(A) $f(x)$ and $g(x)$ are both integrable on I
(B) $f(x)$ is integrable on I but $g(x)$ is not integrable on I
(C) $f(x)$ and $g(x)$ both are not integrable on I
(D) None of the above
47. What is the value of integral
$\int_{0}^{4}[x] d x$?
(A) 8
(B) 4
(C) 6
(D) None of the above
48. If a function $f(x)$ is continuous on [2,5], then there exists a point ' c ' in $[2,5]$ such that

$$
\int_{2}^{5} f(x) d x=
$$

(A) 3 c
(B) $\mathrm{cf}(2)$
(C) $\mathrm{cf}(5)$
(D) $3 \mathrm{f}(\mathrm{c})$
49. For what value of k, the function $f(x, y)$ defined by $f(x, y)=\left\{\begin{array}{cc}\frac{x y^{k}}{x^{2}+y^{2 k}} & ,(x, y) \neq(0,0) \\ 0 & ,(x, y)=(0,0)\end{array}\right.$
is continuous at $(0,0)$?
(A) $\mathrm{k}=1$
(B) $\mathrm{k}=2$
(C) $\mathrm{k}=3$
(D) None of these
50. If $x y z=t_{1} t_{2} t_{3}$, what is the minimum value of $\mathrm{t}_{2} \mathrm{t}_{3} \mathrm{x}+\mathrm{t}_{3} \mathrm{t}_{1} \mathrm{y}+\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{z}$?
(A) $t_{1}+t_{2}+t_{3}$
(B) $3 \mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}$
(C) $\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3}$
(D) None of the above
51. If $\beta(m, n)$ denotes the beta function, which of the following is the value of $\beta\left(\frac{3}{2}, \frac{1}{2}\right)$?
(A) $\frac{\pi}{2}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{4}$
(D) None of the above
52. What is the value of the double integral

$$
\iint_{R}\left(x^{2}+y^{2}\right) d x d y
$$

where R is the region defined by $R=\{(x, y): 0<x<y<1\} ?$
(A) 1
(B) $\frac{2}{3}$

DAJ-F
53. Let G be a group of all 2×2 non-singular matrices over the real numbers, then which of the following represent a member $Z(G)$, the centre of G ?
(A) $\left[\begin{array}{ll}a & a \\ a & 0\end{array}\right]$
(B) $\left[\begin{array}{ll}\mathrm{a} & 0 \\ 0 & \mathrm{a}\end{array}\right]$
(C) $\left[\begin{array}{ll}0 & \mathrm{a} \\ \mathrm{a} & 0\end{array}\right]$
(D) None of the above
54. Let G be a finite group with order $\mathrm{O}(\mathrm{G})$. If N is a normal sub-group of G , then which of the following is true?
(A) $\mathrm{O}\left(\frac{\mathrm{G}}{\mathrm{N}}\right)=\mathrm{O}(\mathrm{G})-\mathrm{O}(\mathrm{N})$
(B) $\mathrm{O}\left(\frac{\mathrm{G}}{\mathrm{N}}\right)=\mathrm{O}(\mathrm{G}) \cdot \mathrm{O}(\mathrm{N})$
(C) $\mathrm{O}\left(\frac{\mathrm{G}}{\mathrm{N}}\right)=\frac{\mathrm{O}(\mathrm{G})}{\mathrm{O}(\mathrm{N})}$
(D) $\mathrm{O}\left(\frac{\mathrm{G}}{\mathrm{N}}\right)=\mathrm{O}(\mathrm{G})+\mathrm{O}(\mathrm{N})$
55. If $a=(1235)$ and $b=(1579)$, then which of the following is equal to a^{-1} ba ? Where $(\mathrm{f} \circ \mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))$
(A) (3795)
(B) (5793)
(C) (12789)
(D) None of the above
56. For which of the following value of k,

$$
\mathrm{Z}_{\mathrm{k}}=\{0,1,2, \ldots, \mathrm{k}-1\}
$$

the ring of integers $\bmod k$, is a field ?
(A) 256
(B) 961
(C) 1147
(D) None of the above
57. Let operation of addition and scalar multiplication in $V=\{(a, b): a, b \in R\}$
be defined as follows :
(I) $(\mathrm{a}, \mathrm{b})+(\mathrm{c}, \mathrm{d})=(0, \mathrm{~b}+\mathrm{d})$ and

$$
k(a, b)=(0, k b)
$$

(II) $(a, b)+(c, d)=(a+c, b+d)$ and

$$
k(a, b)=(0, k b) .
$$

Then which of the following is true ?
(A) V is a vector space over R with respect to operation defined by (I)
(B) V is the vector space over R with respect to operation defined by (II)
(C) V is not a vector space with respect to operations defined by (I) and (II)
(D) None of the above
58. If W_{1} and W_{2} are two sub spaces of a finite dimensional vector space V, then $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=$
(A) $\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)$
(B) $\operatorname{dim}\left(\mathrm{W}_{1}\right)+\operatorname{dim}\left(\mathrm{W}_{2}\right)-\operatorname{dim}\left(\mathrm{W}_{1}+\mathrm{W}_{2}\right)$
(C) $\operatorname{dim}\left(\mathrm{W}_{1}\right) \operatorname{dim}\left(\mathrm{W}_{2}\right)$
(D) $\operatorname{dim}\left(W_{1}\right) / \operatorname{dim}\left(W_{2}\right)$
59. If S and T are non-empty subsets of a vector space V and $L(S)$ is the linear span of S, then which of the following is true?
(A) $L(S)$ is a sub space of V and $L(S) \subset L(T)$ if $S \subset T$
(B) $L(S)$ is a sub space of V and $L(S) \supset L(T)$ if $S \subset T$
(C) $\mathrm{L}(\mathrm{S})$ is a not a sub space of V
(D) None of the above
60. Given two vector spaces V and W over field F, let $\operatorname{Hom}(\mathrm{V}, \mathrm{W})$ be the set of all vector space homomorphisms of V into W. If $\operatorname{dim}(V)=19$ and $\operatorname{dim}(\mathrm{W})=21$, then what is the $\operatorname{dim} \operatorname{Hom}(\mathrm{V}, \mathrm{W})$?
(A) 40
(B) 19
(C) 21
(D) None of the above

ENTRANCE TEST-2016

FACULTY OF PHYSICAL\& MATERIALSCIENCES M.A./M.Sc. MATHEMATICS

Total Questions	$: 60$
Time Allowed	$: 70$ Minutes

Instructions for Candidates :

1. Write your Roll Number in the space provided at the top of this page of Question Booklet and fill up the necessary information in the spaces provided on the OMR Answer Sheet.
2. OMR Answer Sheet has an Original Copy and a Candidate's Copy glued beneath it at the top. While making entries in the Original Copy, candidate should ensure that the two copies are aligned properly so that the entries made in the Original Copy against each item are exactly copied in the Candidate's Copy.
3. All entries in the OMR Answer Sheet, including answers to questions, are to be recorded in the Original Copy
only.
4. Choose the correct / most appropriate response for each question among the options A, B, C and D and darken the circle of the appropriate response completely. The incomplete darkened circle is not correctly
read by the OMR Scanner and no
5. Use only blue/black ball point pen to darken the circle of correct/most appropriate response. In no case gel/ink pen or pencil should be used.
6. Do not darken more than one circle of options for any question. A question with more than one darkened response shall be considered wrong.
7. There will be 'Negative Marking' for wrong answers. Each wrong answer will lead to the deduction of 0.25 marks from the total score of the candidate.
8. Only those candidates who would obtain positive score in Entrance Test Examination shall be eligible for
admission admission.
9. Do not make any stray mark on the OMR sheet.
10. Calculators and mobiles shall not be permitted inside the examination hall.
11. Rough work, if any, should be done on the blank sheets provided with the question booklet.
12. Ensure that your OMR Answer Sheet has been signed by the Invigilator and the candidate himself/herself.
13. OMR Answer sheet must be handled carefully and it should not be folded or mutilated in which case it will not be evaluated.
14. At the end of the examination, hand over the OMR Answer Sheet to the invigilator who will first tear off the original OMR sheet in presence of the Candidate and hand over the Candidate's Copy to the candidate.

M.A./M.Sc. Mathematics/A

1. Which of the following is true for the function $f(x)=|x|$?
(A) It is continuous for all x
(B) It is differentiable for all x
(C) It is continuous as well as differentiable for all x
(D) It is neither continuous nor differentiable at $x=0$
2. If $f(x)=e^{\frac{1}{x}}, x \neq 0$

$$
=0, x=0
$$

then $\lim _{x \rightarrow 0} f(x)$:
(A) $=0$
(B) $=1$
(C) $=\infty$
(D) Does not exist
3. At $x=0$, the function:

$$
\begin{aligned}
f(x) & =\frac{\sin 2 x}{x}, x \neq 0 \\
& =1, x=0
\end{aligned}
$$

is:
(A) Continuous
(B) Differentiable
(C) Continuous but not differentiable
(D) Neither continuous nor differentiable
4. If $f^{\prime}(x)$ is positive in $[a, b]$, then :
(A) f(a) $<$ f(b)
(B) f(a) $>$ f(b)
(C) $f(a)=f(b)$
(D) None of the above holds
5. The coefficient of $\left(x-\frac{\pi}{4}\right)^{3}$ when $\sin x$ is expanded in ascending powers of $\left(x-\frac{\pi}{4}\right)$ is:
(A) $-\frac{1}{\sqrt{2}}$
(B) $-\frac{1}{2 \sqrt{2}}$
(C) $-\frac{1}{6 \sqrt{2}}$
(D) $-\frac{1}{4 \sqrt{2}}$
6. $\lim _{x \rightarrow 0}(1-x)^{\frac{1}{x}}=$
(A) 1
(B) $\frac{1}{\mathrm{e}}$
(C) e
(D) ∞
7. The points of minimum curvature on the curve $y=\log \sin x$ are, for any integer n, given by $x=$
(A) $\pm \frac{\mathrm{n} \pi}{2}$
(B) $\pm \frac{\mathrm{n} \pi}{3}$
(C) $\pm \mathrm{n} \pi$
(D) $\pm \frac{\mathrm{n} \pi}{4}$
8. Which of the following curves has no asymptotes?
(A) $y^{2}=4 a x$
(B) $x^{2} y^{2}+y^{2}=1$
(C) $x y^{3}+x^{3} y=1$
(D) $x y^{2}+y^{2}=x$
9. The general value of x which satisfies the equation:
$\operatorname{cis} x . \operatorname{cis} 2 x . \operatorname{cis} 3 x$ \qquad $\operatorname{cis} \mathrm{nx}=1$
is:
(A) $\frac{2 m \pi}{n+1}$
(B) $\frac{2 \mathrm{~m} \pi}{\mathrm{n}(\mathrm{n}+1)}$
(C) $\frac{4 m \pi}{n(n+1)}$
(D) $\frac{4 m \pi}{n}$
where m is an integer.
10. If $\cos \theta=\frac{1}{2}\left(x+\frac{1}{x}\right), \cos \phi=\frac{1}{2}\left(y+\frac{1}{y}\right)$, then one of the values of

$$
x^{m} y^{n}+\frac{1}{x^{m} y^{n}} \text { is }:
$$

(A) $2 \cos (\theta+\phi)$
(B) $2 \cos (\mathrm{~m} \theta+\mathrm{n} \phi)$
(C) $2 \cos (\mathrm{n} \theta+\mathrm{m} \phi)$
(D) $2 \cos (\mathrm{~m} \theta-\mathrm{n} \phi)$
11. $\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{3}=$
(A) $\frac{\pi}{2}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{4}$
(D) π
12. The sum to n terms of the series

$$
\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{13}+\ldots \ldots
$$

is equal to :
(A) $\tan ^{-1} \frac{\mathrm{n}}{\mathrm{n}+2}$
(B) $\tan ^{-1} \frac{\mathrm{n}+2}{\mathrm{n}}$
(C) $\tan ^{-1} \frac{1}{\mathrm{n}+2}$
(D) $\tan ^{-1} \frac{1}{\mathrm{n}+1}$
13. The line $y=m x+\frac{a}{m}$ touches the parabola $y^{2}=4 a x$ at the point:
(A) $\left(\mathrm{am}^{2}, 2 \mathrm{am}\right)$
(B) $\left(\mathrm{am}^{2}, \frac{2 \mathrm{a}}{\mathrm{m}}\right)$
(C) $\left(\frac{\mathrm{a}}{\mathrm{m}^{2}}, 2 \mathrm{am}\right)$
(D) $\left(\frac{\mathrm{a}}{\mathrm{m}^{2}}, \frac{2 \mathrm{a}}{\mathrm{m}}\right)$
14. The distance between the foci of the ellipse $3 x^{2}+4 y^{2}=12$ is equal to :
(A) 4
(B) 3
(C) 2
(D) 1
15. If a circle cuts the rectangular hyperbola $\mathrm{xy}=\mathrm{a}^{2}$ in points $t_{1}, t_{2}, t_{3}, t_{4}$, then $t_{1} t_{2} t_{3} t_{4}=$
(A) 1
(B) 2
(C) a^{2}
(D) a^{4}
16. The conditions for the line $\frac{x-\alpha}{l}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}$ to lie in the plane $a x+b y+c z+d=0$ are :
(A) $\mathrm{a} \alpha+\mathrm{b} \beta+\mathrm{c} \gamma=0, \mathrm{a} l+\mathrm{bm}+\mathrm{cn}+\mathrm{d}=0$
(B) $\mathrm{a} \alpha+\mathrm{b} \beta+\mathrm{c} \gamma=0, \mathrm{a} l+\mathrm{bm}+\mathrm{cn}=0$
(C) $\mathrm{a} \alpha+\mathrm{b} \beta+\mathrm{c} \gamma+\mathrm{d}=0, \mathrm{a} l+\mathrm{bm}+\mathrm{cn}=0$
(D) $\mathrm{a} \alpha+\mathrm{b} \beta+\mathrm{c} \gamma+\mathrm{d}=0, \mathrm{a} l+\mathrm{bm}+\mathrm{cn}+\mathrm{d}=0$
17. The equation of the radical plane of two spheres

$$
x^{2}+y^{2}+z^{2}+2 u_{1} x+2 v_{1} y+2 w_{1} z+d_{1}=0
$$

and

$$
x^{2}+y^{2}+z^{2}+2 u_{2} x+2 v_{2} y+2 w_{2} z+d_{2}=0
$$

is:
(A) $\quad\left(u_{1}-u_{2}\right) \mathrm{x}+\left(v_{1}-v_{2}\right) \mathrm{y}+\left(w_{1}-w_{2}\right) \mathrm{z}+\left(\mathrm{d}_{1}-\mathrm{d}_{2}\right)=0$
(B) $\left(u_{1}+u_{2}\right) \mathrm{x}+\left(v_{1}+v_{2}\right) \mathrm{y}+\left(w_{1}+w_{2}\right) \mathrm{z}+\left(\mathrm{d}_{1}+\mathrm{d}_{2}\right)=0$
(C) $2\left(u_{1}-u_{2}\right) \mathrm{x}+2\left(v_{1}-v_{2}\right) \mathrm{y}+2\left(w_{1}-w_{2}\right) \mathrm{z}+\left(\mathrm{d}_{1}-\mathrm{d}_{2}\right)=0$
(D) $2\left(u_{1}+u_{2}\right) \mathrm{x}+2\left(v_{1}+v_{2}\right) \mathrm{y}+2\left(w_{1}+w_{2}\right) \mathrm{z}+\left(\mathrm{d}_{1}+\mathrm{d}_{2}\right)=0$
18. The general equation to the cone of the second degree passing through the axes is :
(A) $a x^{2}+b y^{2}+c z^{2}+2 u x+2 v y+2 w z+d=0$
(B) $a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 h x y=0$
(C) $a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 h x y+2 u x+2 v y+2 w z+d=0$
(D) $\mathrm{fyz}+\mathrm{gzx}+\mathrm{h} x \mathrm{y}=0$
19. The surface represented by $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=0$ is:
(A) Anellipsoid
(B) A hyperboloid of one sheet
(C) A sphere
(D) A cone
20. The condition for the plane $\lambda x+m y+n z=p$ to touch the central conicoid $a x^{2}+b y^{2}+c z^{2}=1$ is :
(A) $\mathrm{a}^{2} l^{2}+\mathrm{b}^{2} \mathrm{~m}^{2}+\mathrm{c}^{2} \mathrm{n}^{2}=\mathrm{p}^{2}$
(B) $\mathrm{al}^{2}+\mathrm{bm}^{2}+\mathrm{cn}^{2}=\mathrm{p}^{2}$
(C) $\frac{l^{2}}{\mathrm{a}}+\frac{\mathrm{m}^{2}}{\mathrm{~b}}+\frac{\mathrm{n}^{2}}{\mathrm{c}}=\mathrm{p}^{2}$
(D) $\frac{l^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{m}^{2}}{\mathrm{~b}^{2}}+\frac{\mathrm{n}^{2}}{\mathrm{c}^{2}}=\mathrm{p}^{2}$
21. $\int \frac{\mathrm{dx}}{\mathrm{x}^{2} \sqrt{1+\mathrm{x}^{2}}}=$
(A) $\frac{x}{\sqrt{1+x^{2}}}$
(B) $-\frac{\mathrm{x}}{\sqrt{1+\mathrm{x}^{2}}}$
(C) $\frac{\sqrt{1+x^{2}}}{x}$
(D) $-\frac{\sqrt{1+\mathrm{x}^{2}}}{\mathrm{x}}$
22. The value of $\int_{0}^{\pi} \frac{\sin n x}{\sin x} d x$, where n is an odd integer, is :
(A) 0
(B) π
(C) n
(D) $n \pi$
23. The area bounded by the curve $y=\cos x(0 \leq x \leq 2 \pi)$, the x-axis and the ordinate $x=2 \pi$ is equal to :
(A) 2
(B) 2π
(C) 4π
(D) 4
24. For what value of n is $\operatorname{div} \bar{F}=0$, where $\bar{F}=r^{n} \vec{r}, \vec{r}=x \hat{1}+y \dot{j}+z k$ and $r=|\vec{r}|$?
(A) -2
(B) -1
(C) -3
(D) -4
25. The degree and order of the differential equation

$$
x \frac{d y}{d x}+y=a \frac{d x}{d y}
$$

are respectively :
(A) 2,1
(B) 1,2
(C) 1,1
(D) 2,2
26. The solution of the differential equation

$$
x\left(1+y^{2}\right) d x+y\left(1+x^{2}\right) d y=0
$$

is:
(A) $1+x^{2}+y^{2}=k$
(B) $\left(1+x^{2}\right)\left(1+y^{2}\right)=k$
(C) $\frac{1+\mathrm{x}^{2}}{1+\mathrm{y}^{2}}=\mathrm{k}$
(D) $\frac{1+\mathrm{y}^{2}}{1+\mathrm{x}^{2}}=\mathrm{k}$
27. Which of the following differential equations is not exact?
(A) $x d y+(y-x) d x=0$
(B) $\left(e^{y}+1\right) \cos x d x+e^{y} \sin x d y=0$
(C) $\left(x^{2}+y^{2}\right) d x+\left(x^{2}-y^{2}\right) d y=0$
(D) $\left(1-2 x y-y^{2}\right) d x-(x+y)^{2} d y=0$
28. The particular integral of the differential equation

$$
\left(D^{3}-3 D+2\right) y=x^{2} e^{x}
$$

is:
(A) $e^{x}\left(\frac{x^{4}}{36}-\frac{x^{3}}{27}+\frac{x^{2}}{27}\right)$
(B) $\mathrm{e}^{\mathrm{x}}\left(\frac{\mathrm{x}^{4}}{27}-\frac{\mathrm{x}^{3}}{27}+\frac{\mathrm{x}^{2}}{36}\right)$
(C) $e^{x}\left(\frac{x^{4}}{27}-\frac{x^{3}}{36}+\frac{x^{2}}{27}\right)$
(D) $\mathrm{e}^{\mathrm{x}}\left(\frac{\mathrm{x}^{4}}{36}+\frac{\mathrm{x}^{3}}{27}+\frac{\mathrm{x}^{2}}{27}\right)$
29. If A is a square matrix and $P=A+\bar{A}^{\prime}, Q=A-\bar{A}^{\prime}$ then :
(A) P is symmetric, Q is skew-symmetric
(B) P is skew-symmetric, Q is symmetric
(C) P is Hermitian, Q is skew-Hermitian
(D) P is skew-Hermitian, Q is Hermitian
30. Which of the following is not true for any three square matrices $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ of the same order?
(A) $\mathrm{P}+(\mathrm{Q}+\mathrm{R})=(\mathrm{P}+\mathrm{Q})+\mathrm{R}$
(B) $P(Q R)=(P Q) R$
(C) $\mathrm{P}(\mathrm{Q}+\mathrm{R})=\mathrm{PQ}+\mathrm{PR}$
(D) $P Q=P R \Rightarrow Q=R$
31. For what values of α, β, γ, the matrix

$$
A=\left[\begin{array}{rrr}
0 & 2 \beta & \gamma \\
\alpha & \beta & -\gamma \\
\alpha & -\beta & \gamma
\end{array}\right]
$$

satisfies $\mathrm{AA}^{\prime}=\mathrm{I}$?
(A) $\alpha= \pm \frac{1}{\sqrt{6}}, \beta= \pm \frac{1}{\sqrt{2}}, \gamma= \pm \frac{1}{\sqrt{3}}$
(B) $\alpha= \pm \frac{1}{\sqrt{3}}, \beta= \pm \frac{1}{\sqrt{2}}, \gamma= \pm \frac{1}{\sqrt{6}}$
(C) $\alpha= \pm \frac{1}{\sqrt{2}}, \beta= \pm \frac{1}{\sqrt{3}}, \gamma= \pm \frac{1}{\sqrt{6}}$
(D) $\alpha= \pm \frac{1}{\sqrt{2}}, \beta= \pm \frac{1}{\sqrt{6}}, \gamma= \pm \frac{1}{\sqrt{3}}$
32. If A is an idempotent matrix of order 3 whose trace is equal to 5 , then the trace of $5 A^{4}-4 A^{3}+3 A^{2}-4 A+I$ is equal to :
(A) 5
(B) 4
(C) 3
(D) 2°
33. The sum and the product of the roots of the characteristic equation of the matrix

$$
A=\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right]
$$

are respectively:
(A) 7 and 7
(B) 7 and 5
(C) 7 and 6
(D) 7 and 8
34. For what value of b does the system of equations $2 x+y+2 z=0, x+y+3 z=0$, $4 x+3 y+b z=0$ have a non-trivial solution ?
(A) $\mathrm{b}=2$
(B) $\mathrm{b}=3$
(C) $\mathrm{b}=6$
(D) $\mathrm{b}=8$
35. The rank of the matrix $\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 3\end{array}\right]$ is equal to :
(A) 2
(B) 3
(C) 1
(D) 4
36. The number of linearly independent solutions of the equation $x+y=1$ is :
(A) 1
(B) 2
(C) 3
(D) 4
37. The condition that the roots of the equation $x^{3}-p x^{2}+q x-r=0$ are in G.P. is that :
(A) $q^{3}=p^{3} r$
(B) $\mathrm{p}^{3}=\mathrm{q}^{3} \mathrm{r}$
(C) $\mathrm{r}^{3}=\mathrm{p}^{3} \mathrm{q}$
(D) $\mathrm{pqr}=1$
38. If $P(x)=0$ is an equation of odd degree such that $x^{n} P\left(\frac{1}{x}\right)=P(x)$, which of the following is a root of $\mathrm{P}(\mathrm{x})=0$?
(A) $\mathrm{x}=1$
(B) $x=-1$
(C) $\mathrm{x}=0$
(D) None of these
39. If α, β, γ are the roots of the cubic $x^{3}+p x^{2}+q x+r=0$, then $\alpha^{3} \beta^{3}+\beta^{3} \gamma^{3}+\gamma^{3} \alpha^{3}=$
(A) $3 \mathrm{r}-\mathrm{pq}$
(B) $\frac{q^{2}-2 p r}{r^{2}}$
(C) $2\left(p^{2}-3 q\right)$
(D) $3 \mathrm{r}^{2}+\mathrm{q}^{3}-3 \mathrm{pqr}$
40. How many roots of the equation $\mathrm{z}^{4}+\mathrm{z}^{2}+1=0$ lie in $|\mathrm{z}|<1$?
(A) 1
(B) 2
(C) 3
(D) None
41. If the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are defined by

$$
\begin{aligned}
a_{n} & =2^{n}, \text { when } n \text { is odd } \\
& =3^{n}, \text { when } n \text { is even }
\end{aligned}
$$

and

$$
\begin{aligned}
b_{n} & =3^{n}, \text { when } n \text { is odd } \\
& =2^{n}, \text { when } n \text { is even, }
\end{aligned}
$$

then the limit superior of the sequence $\left\{\left(a_{n} b_{n}\right)^{\frac{1}{n}}\right\}$ is equal to:
(A) 2
(B) 3
(C) 6
(D) 9
42. The series $\frac{\mathrm{x}}{1}+\frac{1}{2} \cdot \frac{\mathrm{x}^{3}}{3}+\frac{1.3}{2.4} \cdot \frac{\mathrm{x}^{5}}{5}+\frac{1.3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{\mathrm{x}^{7}}{7}+\ldots \ldots$. is convergent if:
(A) $\mathrm{x}^{2}>1$
(B) $\mathrm{x}^{2} \leq 1$
(C) $x>1$
(D) $\mathrm{x}<1$
43. Under what condition does the equation $\mathrm{ax}^{=}=\mathrm{e}^{\mathrm{x}}$ have a root between 0 and 1 ?
(A) $\mathrm{a}=\mathrm{e}$
(B) $\mathrm{a}<\mathrm{e}$
(C) $a>e$
(D) None
44. Under what condition is $|x+y|<|x|+|y| ; x, y \in R$?
(A) $\quad x y>0$
(B) $x y=0$
(C) $x y<0$
(D) $x y \leq 0$
45. Which of the following is true for the function f defined over $[a, b]$ by
$f(x)=x$, when x is rational
$=-\mathrm{x}$, when x is irrational ?
(A) fis integrable but $|f|$ is not integrable over [a, b]
(B) $|f|$ is integrable but f is not integrable over $[\mathrm{a}, \mathrm{b}]$
(C) f and $|f|$ are both integrable over $[\mathrm{a}, \mathrm{b}]$
(D) Neither f nor $|f|$ is integrable over $[\mathrm{a}, \mathrm{b}]$
46. Which of the following is not true?
(A) Every continuous function on [a, b] is integrable over [a, b]
(B) Every monotonic function on [a, b] is integrable over [a, b]
(C) Every integrable function over [a, b] is continuous on [a, b]
(D) A bounded function having a finite number of discontinuities on [a, b] is integrable over [a, b]
47. If fis a bounded function defined on $[\mathrm{a}, \mathrm{b}]$ and P_{1}, P_{2} are any two partitions of $[\mathrm{a}, \mathrm{b}]$, then:
(A) $L\left(P_{l} \cup P_{2}, f\right) \leq L\left(P_{r}, f\right)$
(B) $U\left(P_{I} \cup P_{2}, f\right) \geq U\left(P_{r}, f\right)$
(C) $L\left(P, \cup P_{2}, f\right) \leq \mathrm{U}\left(P, \cup P_{2}, f\right)$
(D) $U\left(P_{p}, f\right) \leq U\left(P_{2}, f\right)$
48. The value of the R-integral $\int_{-1}^{1} f(x) d x$, where $f(x)=|x|$ is :
(A) 0
(B) 1
(C) 2
(D) 3
49. $\lim _{(x, y) \rightarrow(0.0)} \frac{x y^{3}}{x^{2}+y^{6}}$
(A) $=0$
(B) $=\infty$
(C) $=1$
(D) Does not exist
50. At $(0,0)$ the function

$$
\begin{aligned}
f(x, y) & =\frac{x^{2} y}{x^{3}+y^{3}},(x, y) \neq(0,0) \\
& =0,(x, y)=(0,0)
\end{aligned}
$$

is:
(A) Continuous
(B) Differentiable
(C) Discontinuous
(D) Continuous but not differentiable
51. The value of $\iint_{A} x y f(x, y) d x d y$, where $A=\{(x, y), 0<x<1,0<y<1\}$ and $f(x, y)=x+y$ is :
(A) $\frac{7}{12}$
(B) $\frac{11}{144}$
(C) $-\frac{1}{11}$
(D) $\frac{1}{3}$
52. The function $f(x, y)=x^{3}+y^{3}-3 x-12 y+20$ has a maximum value at :
(A) $(1,2)$
(B) $(-1,2)$
(C) $(1,-2)$
(D) $(-1,-2)$
53. Let the binary operation * be defined on the set Z of integers by $a^{*} b=a+b-7$. Then the inverse of 2 in Z is :
(A) $\quad-2$
(B) 0
(C) 10
(D) 12
54. A non-commutative group has:
(A) At least 4 elements
(B) At least 5 elements
(C) At least 6 elements
(D) None of these
55. The number of generators of an infinite cyclic group is :
(A) 0
(B) 1
(C) 2
(D) Infinite
56. If $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ is an isomorphism, then the kernel of f is equal to :
(A) (e)
(B) G
(C) G^{\prime}
(D) None of these
57. Which of the following is incorrect in the theory of rings?
(A) Every ideal is a subring
(B) The product of any two ideals is again an ideal
(C) Every field is an integral domain
(D) None of the above
58. The ideal (2) in the ring of integers is :
(A) A prime ideal
(B) A principal ideal
(C) Amaximal ideal
(D) All of the above
59. Which of the following is true for the vectors $(1,0,0),(0,1,0)$ and $(0,0,1)$ in the real vector space R^{3} ?
(A) They are linearly dependent in R^{3}
(B) They form a basis of R^{3}
(C) Both (A) and (B)
(D) Neither (A) nor (B)
60. If V and W are vector spaces over the same field F of dimensions m and n respectively, then $\operatorname{Hom}(V, W)$ is a vector space over F of dimension :
(A) m^{2}
(B) $\mathrm{m} \cdot \mathrm{n}$
(C) n^{2}
(D) $\frac{m}{n}$

ROUGH WORK

M.A./M.Sc. Mathematics/B

1. For what values of m, n, the system of equations

$$
x+y+z=6, x+2 y+3 z=10, x+2 y+m z=n
$$

have no solution?
(A) $\mathrm{m}=3, \mathrm{n}=10$
(B) $\mathrm{m}=3, \mathrm{n} \neq 10$
(C) $\mathrm{m} \neq 3, \mathrm{n}=10$
(D) $\mathrm{m} \neq 3, \mathrm{n} \neq 10$
2. If α, β, γ are the roots of the equation $x^{3}-6 x^{2}+11 x-6=0$, then the equation whose roots are $\alpha \beta, \beta \gamma, \gamma \alpha$ is :
(A) $\mathrm{x}^{3}-11 \mathrm{x}^{2}+36 \mathrm{x}+36=0$
(B) $\mathrm{x}^{3}-11 \mathrm{x}^{2}+36 \mathrm{x}-36=0$
(C) $x^{3}+11 x^{2}-36 x+36=0$
(D) $\mathrm{x}^{3}-11 \mathrm{x}^{2}-36 \mathrm{x}+36=0$
3. If α, β, γ are the roots of the equation $x^{3}+a x-b=0$, then $\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}=$
(A) a^{2}
(B) $\mathrm{a}^{2}+\mathrm{b}$
(C) $\mathrm{a}^{2}-2 \mathrm{~b}$
(D) $a^{2}-b$
4. The numbers of positive and negative roots of the equation $x^{3}+x^{2}+x-1=0$ are respectively :
(A) 1,1
(B) 1,2
(C) 2,1
(D) 2,2
5. How many roots does the equation $z^{4}+z^{2}+1=0$ have in $|z|<1$?
(A) 4
(B) 3
(C) 2
(D) 0
6. If ' a ' and ' b ' are the supremum and infimum of the set $S=\left\{\frac{1}{n}, n \in N\right\}$, then :
(A) $a \in S, b \in S$
(B) $\mathrm{a} \in \mathrm{S}, \mathrm{b} \notin \mathrm{S}$
(C) $\mathrm{a} \notin \mathrm{S}, \mathrm{b} \in \mathrm{S}$
(D) $\mathrm{a} \notin \mathrm{S}, \mathrm{b} \notin \mathrm{S}$
7. If $\mathrm{Q}, \mathrm{Q}^{\mathrm{c}}$ and R are the sets of rational, irrational and real numbers respectively, then the set Q together with the set of its limit points equals :
(A) Q
(B) Q^{c}
(C) R
(D) ϕ
8. Which of the following is true for the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$, where

$$
\mathrm{a}_{\mathrm{n}}=1+\frac{1}{2!}+\frac{1}{3!}+\ldots \ldots \ldots .+\frac{1}{\mathrm{n}!} \text { and } \mathrm{b}_{\mathrm{n}}=\frac{(-1)^{\mathrm{n}}}{\mathrm{n}}, \mathrm{n}=1,2,3 \ldots \ldots \ldots \text { ? }
$$

(A) $\left\{a_{n}\right\}$ is convergent, $\left\{b_{n}\right\}$ is divergent
(B) $\left\{b_{n}\right\}$ is convergent, $\left\{a_{n}\right\}$ is divergent
(C) Both are convergent
(D) Both are divergent
9. At which point x in $[-1,1]$ is the tangent to the curve $\mathrm{y}=\sqrt{1-\mathrm{x}^{2}}$ parallel to the x -axis?
(A) $\mathrm{x}=-1$
(B) $\mathrm{x}=1$
(C) $\mathrm{x}=0$
(D) None of the above
10. If $f(x)$ is continuous on $[\mathrm{a}, \mathrm{b}]$, then which of the following is not true in general ?
(A) $\int_{a}^{b} f(x) d x=\lambda(b-a)$ for some number λ lying between the bounds of $f(x)$
(B) $\int_{a}^{b} f(x) d x=(b-a) f(c)$ for some number c lying between a and b
(C) $\left|\int_{a}^{b} f(x) d x\right| \leq k|b-a|$ for some number k such that

$$
|\mathrm{f}(\mathrm{x})| \leq \mathrm{k}, \forall \mathrm{x} \in[\mathrm{a}, \mathrm{~b}]
$$

(D) $\int_{a}^{b} f(x) d x=0$ if $f(x) \geq 0, \forall x \in[a, b]$
11. Which of the following is true for the function

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =1, \mathrm{x} \text { rational } \\
& =0, \mathrm{x} \text { irrational }
\end{aligned}
$$

in $[\mathrm{a}, \mathrm{b}]$?
(A) $\int_{a}^{b} f(x) d x=0$
(B) $\int_{a}^{b} f(x) d x=1$
(C) $\mathrm{f}(\mathrm{x})$ is not R -integrable over [a, b]
(D) None of the above
12. What is the value of $\int_{-1}^{1}|x| d x$?
(A) 1
(B) -1
(C) 2
(D) 0
13. If $[x]$ denotes the greatest integer function not greater than x, then $\int_{0}^{3}[x] d x=$
(A) 0
(B) 2
(C) 3
(D) 1
14. $\operatorname{Lim}_{(x, y) \rightarrow(0,0)} \frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}=$
(A) 0
(B) 1
(C) 2
(D) -1
15. If $f(x, y)=2 x^{4}-3 x^{2} y+y^{2}$, then $f(x, y)$ has :
(A) a maximum at $(0,0)$
(B) a minimum at $(0,0)$
(C) neither a maximum nor a minimum at $(0,0)$
(D) none of the above properties
16. If $\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x$, then $\Gamma\left(\frac{3}{2}\right)=$
(A) $\sqrt{\pi}$
(B) $\frac{\sqrt{\pi}}{2}$
(C) $\sqrt{2 \pi}$
(D) $\sqrt{\frac{\pi}{2}}$
17. What is the value of $\iint_{\mathrm{E}} \mathrm{e}^{\frac{y}{x}} d x d y$, where E is the triangle formed by the straight lines $\mathrm{y}=\mathrm{x}, \mathrm{y}=0$ and $\mathrm{x}=1$?
(A) $\mathrm{e}-1$
(B) $\frac{\mathrm{e}}{2}$
(C) $\frac{1-\mathrm{e}}{2}$
(D) $\frac{\mathrm{e}-1}{2}$
18. If a function $f:[0,1] \rightarrow R$ is defined by $f(x)=x^{2}$, then f is :
(A) one-one
(B) onto
(C) one-one and onto
(D) many-one
19. If $\mathrm{G}=\left\{\mathrm{z} \in \mathrm{C}, \mathrm{z}^{\mathrm{n}}=1\right\}$, then G is a multiplicative group which is :
(A) Abelian
(B) non-abelian
(C) of prime order
(D) without any subgroups
20. If the number of left cosets of a subgroup H of a group G with identity e, then :
(A) $\mathrm{H}=\{\mathrm{e}\}$
(B) $\mathrm{H}=\mathrm{G}$
(C) H is normal in G
(D) G is simple
21. If G is a group and $f: G \rightarrow G$ is defined by $f(x)=x^{-1} a x, \forall x \in G$ for some fixed element $a \in G$, then f is :
(A) a homomorphism on G
(B) an isomorphism on G
(C) an automorphism on G
(D) all the above
22. Which of the following is true for any two subrings S_{1} and S_{2} of a ring R ?
(A) $\mathrm{S}_{1} \cap \mathrm{~S}_{2}=\Phi$
(B) $\mathrm{S}_{1} \cap \mathrm{~S}_{2} \neq \Phi$
(C) $\mathrm{S}_{1} \cup \mathrm{~S}_{2}=\mathrm{R}$
(D) $\mathrm{S}_{1} \subset \mathrm{~S}_{2}$
23. Which of the following is both a prime and a maximal ideal in the ring of intergers?
(A) (4)
(B) (6)
(C) (2)
(D) (15)
24. If X is a finite dimensional vector space and X^{\prime} its dual space, then :
(A) $\operatorname{dim}\left(\mathrm{X}^{\prime}\right)<\operatorname{dim}(\mathrm{X})$
(B) $\operatorname{dim}\left(\mathrm{X}^{\prime}\right)>\operatorname{dim}(\mathrm{X})$
(C) $\operatorname{dim}\left(\mathrm{X}^{\prime}\right)=\operatorname{dim}(\mathrm{X})$
(D) $\operatorname{dim}(\mathrm{X})<\operatorname{dim}(\mathrm{X})$
25. If T is a linear transformation from the vector space X_{F} to the vector space Y_{F}, then T is one-one if and only if :
(A) $T(x)=0 \Rightarrow x=0$
(B) $\mathrm{x}=0 \Rightarrow \mathrm{~T}(\mathrm{x})=0$
(C) Neither (A) nor (B) holds
(D) None of the above holds
26. Which of the following is a point of discontinuity of the function :

$$
\begin{aligned}
f(0) & =x \sin \frac{1}{x}, x \neq 0 \\
& =0, x=0 ?
\end{aligned}
$$

(A) $\mathrm{x}=0$
(B) $\mathrm{x}={ }^{\circ} 1$
(C) $x=2$
(D) None of the above
27. What is the value of the ' c ' of the Lagrange's Mean Value Theorem for the function $f(x)=2 x^{2}-7 x+10$ in $[2,5]$?
(A) $\mathrm{c}=\frac{7}{4}$
(B) $\mathrm{c}=\frac{7}{2}$
(C) $\mathrm{c}=\frac{2}{7}$
(D) $\mathrm{c}=\frac{10}{7}$
28. If $f^{\prime \prime}(x)$ exists and is continuous, then $\frac{f(x+h)+f(x-h)-2 f(x)}{h}=$
(A) $\mathrm{f}^{\prime}(\mathrm{x})$
(B) $\mathrm{f}(\mathrm{x})$
(C) $\mathrm{f}^{\prime \prime}(\mathrm{x})$
(D) None of the above
29. If $u=\lim _{x \rightarrow 0} \frac{e^{\frac{1}{x}}}{e^{\frac{1}{x}}+1}$, then :
(A) $\mathrm{u}=0$
(B) $u=1$
(C) $u=e$
(D) u does not exist
30. What is the value of $\lim _{x \rightarrow 0} \frac{e^{x} \sin x-x-x^{2}}{x^{3}}$?
(A) 0
(B) $\frac{2}{3}$
(C) $\frac{1}{3}$
(D) 1
31. The angle of intersection of the curves $r=a \theta$ and $r=\frac{a}{0}$ is equal to :
(A) $\frac{\pi}{3}$
(B) $\frac{\pi}{2}$
(C) $\frac{\pi}{4}$
(D) $\frac{\pi}{6}$
32. If $u=\tan ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$, then $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=$
(A) $\sin 2 u$
(B) $\sin u$
(C) $\frac{1}{2} \sin 2 u$
(D) $\frac{1}{2} \sin u$
33. The points of numerically maximum curvature on the curve $y=\log \sin x$ are given by :
(A) $\mathrm{x}= \pm \mathrm{n} \pi$
(B) $\mathrm{x}= \pm(2 \mathrm{n}+1) \frac{\pi}{2}$
(C) $x= \pm \frac{\mathrm{n} \pi}{2}$
(D) $\mathrm{x}= \pm(2 \mathrm{n}+1) \pi$,
where $\mathrm{n}=0,1,2,3$ \qquad
34. Which of the following pairs gives the modulus and amplitude of the complex number :
$1-\cos \phi+i \sin \phi ?$
(A) $2 \sin \frac{\phi}{2}, \frac{\pi}{2}$
(B) $2 \sin \frac{\phi}{2}, \frac{\pi}{2}-\frac{\phi}{2}$
(C) $\sin \frac{\phi}{2}, \frac{\pi}{2}$.
(D) $\sin \frac{\phi}{2}, \frac{\pi}{2}-\frac{\phi}{2}$
35. If $\cos 2 \theta+i \sin 2 \theta=\mathrm{p}, \cos 2 \phi+\mathrm{i} \sin 2 \phi=\mathrm{q}$, then $\sqrt{\frac{\mathrm{p}}{\mathrm{q}}}+\sqrt{\frac{\mathrm{q}}{\mathrm{p}}}=$
(A) $\cos (\theta-\phi)$
(B) $2 \cos (\theta-\phi)$
(C) $2 \mathrm{i} \sin (\theta-\phi)$
(D) $i \sin (0-\phi)$
36. The real and imaginary parts of $\log (-i)$ are respectively :
(A) $1,-\frac{\pi}{2}$
(B) $0,(4 \mathrm{n}-1) \pi$
(C) $1,(4 \mathrm{n}-1) \frac{\pi}{2}$
(D) $0,(4 n-1) \frac{\pi}{2}$
37. What is the sum to n terms of the series

$$
\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{13}+
$$

\qquad
(A) $\tan ^{-1} \frac{n}{n+1}$
(B) $\tan ^{-1} \frac{\mathrm{n}+1}{\mathrm{n}}$
(C) $\tan ^{-1} \frac{\mathrm{n}}{\mathrm{n}+2}$
(D) $\tan ^{-1} \frac{\mathrm{n}+2}{\mathrm{n}}$
38. The coordinates of the foci and eccentricity of the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ are respectively :
(A) $(0, \pm \sqrt{7}), \frac{\sqrt{7}}{4}$
(B) $(\pm \sqrt{7}, 0), \frac{\sqrt{7}}{4}$
(C) $(\pm \sqrt{7}, 0), \sqrt{7}$
(D) $(0, \pm \sqrt{7}), \sqrt{7}$
39. Which of the following is the equation of the normal to the rectangular hyperbola

$$
x^{2}-y^{2}=a^{2} \text { at the point }(a \sec \theta, b \tan \theta) ?
$$

(A) $x \sec 0-y \tan \theta=a \tan \theta \sec \theta$
(B) $\mathrm{x} \tan 0+\mathrm{y} \sec 0=a \tan \theta \sec \theta$
(C) $\mathrm{x} \tan 0+\mathrm{y} \sec 0=2 \mathrm{a} \tan \theta \sec \theta$
(D) $\mathrm{x} \sec 0-\mathrm{y} \tan \theta=2 \mathrm{a} \tan \theta \sec \theta$
40. What is the centre of the conic

$$
36 x^{2}+24 x y+29 y^{2}-72 x+126 y+81=0 ?
$$

(A) $(2,3)$
(B) $(3,2)$
(C) $(3,-2)$
(D) $(2,-3)$
41. The image of the point $(1,3,4)$ in the plane $2 x-y+z+3=0$ is :
(A) $(2,-1,1)$
(B) $(1,3,4)$
(C) $(-1,4,3)$
(D) $(-3,5,2)$
42. The distance of the centre of the sphere

$$
x^{2}+y^{2}+z^{2}-2 y-4 z=11
$$

from the $y z$-plane is :
(A) 0
(B) 1
(C) 2
(D) 11
43. The semi-vertical angle of a right circular cone having 3 mutually perpendicular generators is :
(A) $\tan ^{-1} \frac{1}{\sqrt{2}}$
(B) $\tan ^{-1} \sqrt{2}$
(C) $\tan ^{-1} \sqrt{3}$
(D) $\tan ^{-1} \frac{1}{\sqrt{3}}$
44. The locus of the tangents to a sphere which are parallel to a given line is :
(A) a sphere
(B) a cone
(C) a cylinder
(D) a circle
45. Which of the following is the condition for the plane $l x+m y+n z=p$ to touch the conicoid $\mathrm{ax}^{2}+\mathrm{by}^{2}+\mathrm{cz}^{2}=1$?
(A) $\mathrm{a} \mathrm{l}^{2}+\mathrm{bm}^{2}+\mathrm{cn}^{2}=\mathrm{p}^{2}$
(B) $\mathrm{a}^{2} l^{2}+\mathrm{b}^{2} \mathrm{~m}^{2}+\mathrm{c}^{2} \mathrm{n}^{2}=\mathrm{p}^{2}$
(C) $\mathrm{a}^{2} l+\mathrm{b}^{2} \mathrm{~m}+\mathrm{c}^{2} \mathrm{n}=\mathrm{p}^{2}$
(D) $\frac{\ell^{2}}{\mathrm{a}}+\frac{\mathrm{m}^{2}}{\mathrm{~b}}+\frac{\mathrm{n}^{2}}{\mathrm{c}}=\mathrm{p}^{2}$
46. What is the value of $\int \frac{x^{x} d x}{(x+1)^{2}}$?
(A) $\frac{\mathrm{e}^{\mathrm{x}}}{(\mathrm{x}+1)^{2}}+\mathrm{c}$
(B) $\frac{\mathrm{e}^{\mathrm{x}}}{\mathrm{x}^{2}+1}+\mathrm{c}$
(C) $\frac{\mathrm{e}^{\mathrm{x}}}{\mathrm{x}+1}+\mathrm{c}$
(D) None of the above
47. Which of the following is the value of $\int_{0}^{\frac{\pi}{2}} \sin ^{5} x d x$?
(A) $\frac{4}{5}$
(B) $\frac{8}{15}$
(C) $\frac{3}{4}$
(D) $\frac{15}{8}$
48. Find the value of $\lim _{x \rightarrow 0} \frac{0}{x^{2}}$.
(A) $\quad \sin x$
(B) $\cos x$
(C) $\frac{1}{3}$
(D) None of the above

CLM-53699-B

49. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-\hat{k}$, then $\vec{a} \cdot \vec{b} \times \vec{c}$ and $\vec{a} \times(\vec{b} \times \vec{c})$ are respectively equal to :
(A) $4,-2 \hat{j}+2 \hat{k}$
(B) $4,2 \hat{i}-2 \hat{k}$
(C) $4,2 \hat{i}-2 \hat{j}$
(D) $4,2 \hat{j}-2 \hat{k}$
50. The pair giving the degree and order of the differential equation
$\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$ is :
(A) $(3,2)$
(B) $(2,2)$
(C) $(2,3)$
(D) $(3,3)$
51. Which of the following is the general solution of the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+y=e^{\tan ^{-1} x} ?$
(A) $\mathrm{y}=\frac{1}{2} \mathrm{e}^{-\tan ^{-1} \mathrm{x}}+\mathrm{ce}^{\tan ^{-1} \mathrm{x}}$
(B) $y=\frac{1}{2} e^{\tan ^{-1} x}+c^{-\tan ^{-1} x}$
(C) $y=\frac{1}{2} e^{2 \tan ^{-1} x}+c^{-2 \tan ^{-1} x}$
(D) $\mathrm{y}=\frac{1}{2} \mathrm{e}^{-2 \tan ^{-1} \mathrm{x}}+\mathrm{ce}^{2 \tan ^{-1} \mathrm{x}}$
52. The general solution of the differential equation $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x^{2} e^{3 x}$ is :
(A) $y=\left(c_{1}+c_{2} x\right) e^{x}+\frac{e^{3 x}}{8}\left(2 x^{2}-4 x+3\right)$
(B) $\mathrm{y}=\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}\right) \mathrm{e}^{\mathrm{x}}$
(C) $y=\left(c_{1}+c_{2} x+c_{3} x^{2}\right) e^{x}$
(D) $y=\left(c_{1}+c_{2} x\right) e^{x}+\frac{e^{3 x}}{8}\left(x^{2}-x+2\right)$
53. The general solution of the differential equation $x \frac{d y}{d x}+\left(\frac{d y}{d x}\right)^{2}-y=0$ is :
(A) $\mathrm{y}=\mathrm{cx}+\mathrm{c}^{2}$
(B) $\mathrm{y}=\mathrm{cx}-\frac{1}{\mathrm{c}^{2}}$
(C) $x y=c$
(D) None of the above
54. If A is a skew-symmetric matrix of order n , then :
(A) $|\mathrm{A}|=\mathrm{n}$
(B) $|\mathrm{A}|=1$
(C) $|\mathrm{A}|=0$
(D) None of the above
55. If A^{\prime} is the transpose of a square matrix A and $\mathrm{P}=\frac{\mathrm{A}+\mathrm{A}^{\prime}}{2}, \mathrm{Q}=\frac{\mathrm{A}-\mathrm{A}^{\prime}}{2}$, then :
(A) P is symmetric, Q is skew-symmetric
(B) P and Q are both symmetric
(C) Q is symmetric, P is skew-symmetric
(D) Neither P nor Q is symmetric
56. If $\mathrm{A}=\left[\begin{array}{ccc}5 & 6 & 7 \\ 4 & 3 & 2 \\ 1 & 8 & -9\end{array}\right], \mathrm{B}=\left[\begin{array}{ccc}\lambda & 6 & 7 \\ 4 & \mu & 2 \\ 1 & 8 & v\end{array}\right]$ and $\mathrm{A}+2 \mathrm{~B}=\left[\begin{array}{ccc}1 & 18 & 21 \\ 12 & 5 & 6 \\ 3 & 24 & 5\end{array}\right]$, then $(\lambda, \mu, v)=$
(A) $(-2,1,7)$
(B) $(-1,-2,7)$
(C) $(2,-1,7)$
(D) $(7,1,2)$
57. If A is a square matrix of order 3 such that $|A|=k$, then $|2 A|=$
(A) 2 k
(B) 4 k
(C) 6 k
(D) 8 k
58. If $A=\left[\begin{array}{rrr}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$, for what value of m and n is the characteristic

$$
-x^{3}+m x^{2}+n x+4=0
$$

the characteristic equation of A ?
(A) $\mathrm{m}=-6, \mathrm{n}=9$
(B) $\mathrm{m}=6, \mathrm{n}=-9$
(C) $\mathrm{m}=9, \mathrm{n}=6$
(D) $\mathrm{m}=-9, \mathrm{n}=6$
59. What is the rank of the matrix $\mathrm{A}=\left[\begin{array}{rrrr}2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7\end{array}\right]$?
(A) 4
(B) 3
(C) 2
(D) 1
60. The vectors [23-1-1], $\left.\begin{array}{llll}1 & -1 & -2 & -4\end{array}\right],\left[\begin{array}{lll}3 & 1 & 3\end{array}-2\right]$ and $\left[\begin{array}{lll}6 & 0 & -7\end{array}\right]$:
(A) are linearly independent
(B) are linearly dependent
(C) form a basis for the vector space of all row matrices of order 4
(D) satisfy none of the above properties

1. Which of the following are respectively the infimum and supremum of the set $\left\{\frac{(-1)^{\mathrm{n}}}{\mathrm{n}}, \mathrm{n} \in \mathrm{N}\right\}$?
(A) 0,1
(B) $-1,1$
(C) $-1, \frac{1}{2}$
(D) $\frac{1}{2}, 1$
2. Which of the following is the value of $\lim a_{n}$ where $a_{n}=1+(-1)^{n}, n \in N$?
(A) 0
(B) 1
(C) -1
(D) 2
3. For what value of S_{n} is the sequence $\left\{S_{n}\right\}$ convergent ?
(A) $\mathrm{S}_{\mathrm{n}}=1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots . .+\frac{1}{\mathrm{n}}$
(B) $\mathrm{S}_{\mathrm{n}}=1+\frac{1}{3}+\frac{1}{5}+\ldots \ldots \ldots+\frac{1}{2 \mathrm{n}-1}$
(C) $\mathrm{S}_{\mathrm{n}}=1+\frac{1}{4}+\frac{1}{7}+\ldots \ldots . .+\frac{1}{3 \mathrm{n}-2}$
(D) $\quad \mathrm{S}_{\mathrm{n}}=1+\frac{1}{4}+\frac{1}{9}+\ldots \ldots \ldots+\frac{1}{\mathrm{n}^{2}}$
4. The image of a closed interval under a continuous function is :
(A) a closed interval
(B) an open interval
(C) a semi-open interval
(D) a semi-closed interval
5. The upper and lower Riemann integrals of the functir $f(x)=0$, x rational $=1, \mathrm{x}$ irrational on any interval $[\mathrm{a}, \mathrm{b}]$ are respectively equal to :
(A) $0, b-a$
(B) a, b
(C) $\mathrm{b}-\mathrm{a}, \mathrm{b}+\mathrm{a}$
(D) $\mathrm{b}-\mathrm{a}, 0$
6. What is the value of the R-intergral $\int_{-1}^{1}|x| d x$?
(A) 0
(B) -1
(C) 1
(D) 2
7. Which of the following is not true for the function

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =1, \mathrm{x} \text { rational } \\
& =-1, \mathrm{x} \text { irrational }
\end{aligned}
$$

defined on $[a, b]$?
(A) $\int_{a}^{b} f(x) d x=a-b$
(B) $\quad \int_{a}^{\bar{b}} f(x) d x=b-a$
(C) $f(x)$ is R-integrable over $[a, b]$
(D) $f(x)$ is not R-integrable over $[a, b]$
8. If a function $f(x)$ has an infinite number of discontinuities in $[a, b]$ then:
(A) $f(x)$ is not R-integrable over [a, b]
(B) $\mathrm{f}(\mathrm{x})$ is R -integrable over $[\mathrm{a}, \mathrm{b}]$
(C) f(x) may or may not be R-integrable over [a, b]
(D) None of the above holds
9. If $f(x, y)=\left(\frac{y-x}{y+x}\right)\left(\frac{1+x}{1+y}\right)$, then $\lim _{(x, y) \rightarrow(0,0)}^{f(x, y) \text { : }}$
(A) $=0$
(B) $=1$
(C) $=-1$
(D) Does not exist
10. For the function:

$$
\begin{aligned}
f(x, y) & =\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}},(x, y) \neq(0,0) \\
& =0,(x, y)=(0,0)
\end{aligned}
$$

(A) $\mathrm{fxy}=\mathrm{fyx}$
(B) $\mathrm{fxy} \neq \mathrm{fyx}$
(C) fxy and fyx do not exist
(D) None of the above holds
11. The value of $\iint_{A}(x+y) d x$ dy where $A=\{(x, y), 0<x<1,0<y<1\}$ is:
(A) 0
(B) 1
(C) $\frac{1}{2}$
(D) 2
12. If $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta$, then

$$
\frac{\partial(\mathrm{x}, \mathrm{y}, \mathrm{z})}{\partial(\mathrm{r}, \theta, \varphi)}=
$$

(A) $r \sin \theta$
(B) $r \cos \theta$
(C) $r^{2} \sin \theta$
(D) $\mathrm{r}^{2} \cos \theta$
13. If in a group $\mathrm{G}, \mathrm{a}^{-1}=\mathrm{a}, \forall \mathrm{a} \in \mathrm{G}$, then G is :
(A) finite
(B) infinite
(C) abelian
(D) non-abelian
14. The intersection of two subgroups of finite index is:
(A) empty
(B) of finite index
(C) normal
(D) none of the above
15. If G is a group with center $Z(G)$ and if $\frac{G}{Z(G)}$ is cyclic, then G is :
(A) finite
(B) infinite
(C) abelian
(D) non-abelian
16. The converse of Lagrange's theorem is true for:
(A) finite groups
(B) abelian groups
(C) non-abelian groups
(D) cyclic groups
17. In the ring $\{a+b i ; a, b$ integers $\}$ with respect to usual addition and multiplication, the number of units is :
(A) 1
(B) 2
(C) 3
(D) 4
18. If R is a commutative ring with unity having no nontrivial ideals, then R is :
(A) adivisionring
(B) an integral domain
(C) a field
(D) none of the above
19. Which of the following is a subspace of the vector space of complex numbers over the field of real numbers?
(A) . the set of integers
(B) the set of natural numbers
(C) the set of real numbers
(D) the set of irrational numbers
20. The dimension of the vector space of complex numbers over the real field is :
(A) 1
(B) 2
(C) 3
(D) 4
21. The function $f(x)$ is defined by

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =\frac{|\mathrm{x}-4|}{\mathrm{x}-4}, \mathrm{x} \neq 4 \\
& =0, \mathrm{x}=4
\end{aligned}
$$

what is the value of $\lim _{x \rightarrow 4} f(x)$?
(A) 0
(B) 1
(C) -1
(D) It does not exist
22. If $f(x)=\frac{\sin 2 x}{x}, x \neq 0$

$$
=1, x=0
$$

then $f(x)$ has :
(A) a removable discontinuity at $\mathrm{x}=0$
(B) a discontinuity of the first kind $\mathrm{x}=0$
(C) a discontinuity of the second kind at $\mathrm{x}=0$
(D) none of the above properties
23. Which of the following is the value of the ' C ' of the Lagrange's Mean Value Theorem for the function $f(x)=\log x$ on $\left[\frac{1}{2}, 2\right]$?
(A) $3 \log 2$
(B) $\frac{2}{3 \log 2}$
(C) $\frac{3}{\log 2}$
(D) $\frac{3}{4 \log 2}$
24. If $f(x)=0, x \leq 0$

$$
=x, x>0,
$$

Then $f(x)$ is :
(A) continuous and differentiable at $x=0$
(B) differentiable but not continuous at $x=0$
(C) continuous but not differentiable at $x=0$
(D) neither continuous nor differentiable at $\mathrm{x}=0$
25. Which of the following is the value of $\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}\right)$?
(A) $\frac{1}{3}$
(B) $\frac{1}{2}$
(C) $-\frac{1}{3}$
(D) $-\frac{1}{2}$
26. The polar subtangent for the parabola $\frac{2 \mathrm{a}}{\gamma}=1-\cos \theta$ is equal to :
(A) $a \operatorname{cosec} \frac{\theta}{2}$
(B) $2 a \operatorname{cosec} \frac{\theta}{2}$
(C) $a \operatorname{cosec} \theta$
(D) $2 \mathrm{a} \operatorname{cosec} \theta$
27. The radius of curvature at any point of the curve

$$
x=a(\theta-\sin \theta), y=a(1-\cos \theta)
$$

is equal to:
(A) $a \sin \frac{\theta}{2}$
(B) $4 a \sin \theta$
(C) $4 a \sin \frac{\theta}{2}$
(D) $4 a \cos \theta$
28. What type of a double point is the origin on the curve $a^{2} y^{2}=a^{2} x^{2}-4 x^{3}$?
(A) a node
(B) a cusp
(C) a conjugate point
(D) none of the above
29. For any two complex numbers z_{1} and $z_{2},\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}-2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)=$
(A) 0
(B) 1
(C) $.\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$
(D) $\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}$
30. What is the value of $\frac{(\sqrt{3}+i)^{4}}{(-1+i \sqrt{3})^{6}}$?
(A) $\frac{1}{8}-\mathrm{i} \frac{\sqrt{3}}{8}$
(B) $-\frac{1}{8}+\mathrm{i} \frac{\sqrt{3}}{8}$
(C) $\frac{1}{8}+\mathrm{i} \frac{\sqrt{3}}{8}$
(D) $-\frac{1}{8}-\mathrm{i} \frac{\sqrt{3}}{8}$
31. What is the real part of $\operatorname{Sin}^{-1}(\cos \theta+i \sin \theta)$?
(A) $\sin ^{-1}(\sqrt{\sin \theta})$
(B) $\cos ^{-1}(\sqrt{\cos \theta})$
(C) $\sin ^{-1}(\sqrt{\cos \theta})$
(D) $\cos ^{-1}(\sqrt{\sin \theta})$
32. $\log \left(\frac{a+b i}{a-b i}\right)=$:
(A) $\frac{\pi}{2} \mathrm{i}$
(B) $\quad i \tan ^{-1}\left(\frac{b}{a}\right)$
(C) $2 i \tan ^{-1}\left(\frac{b}{a}\right)$
(D) $\quad i \tan h^{-1}\left(\frac{b}{a}\right)$
33. The line $y=m x+c$ is a normal to the parabola $y^{2}=4 a x$ for all values of m if:
(A) $\mathrm{c}=\mathrm{am}+\frac{\mathrm{a}}{\mathrm{m}}$
(B) $\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{m}^{2}$
(C) $\mathrm{c}=\frac{\mathrm{a}}{\mathrm{m}}$
(D) $\mathrm{c}=-2 \mathrm{am}-\mathrm{am}^{3}$
34. The eccentricity and the distance between the foci of the ellipse $3 x^{2}+4 y^{2}=12$ are respectively equal to :
(A) 2 and $\frac{1}{2}$
(B) $\frac{1}{2}$ and 2
(C) $\frac{1}{3}$ and 3
(D) $\frac{1}{4}$ and 4
35. The equation of the diameter which is conjugate to the diameter $x=2 y$ of the hyperbola $16 \mathrm{x}^{2}-9 \mathrm{y}^{2}=144$ is :
(A) $y=2 x$
(B) $16 x=9 y$
(C) $32 x=9 y$
(D) $9 x=16 y$
36. The equation of a straight line through the point $(3,1,-6)$ and parallel to each of the planes $x+y+2 z-4=0$ and $2 x-3 y+z+5=0$ is :
(A) $\frac{\mathrm{x}-3}{1}=\frac{\mathrm{y}-1}{1}=\frac{\mathrm{z}+6}{2}$
(B) $\frac{\mathrm{x}-3}{2}=\frac{\mathrm{y}-1}{-3}=\frac{\mathrm{z}+6}{1}$
(C) $\frac{x-3}{3}=\frac{y-1}{7}=\frac{z+6}{-5}$
(D) $\frac{x-3}{7}=\frac{y-1}{3}=\frac{z+6}{-5}$
37. The spheres $a\left(x^{2}+y^{2}+z^{2}\right)+21 x+2 m y+2 n z+p=0$ and $b\left(x^{2}+y^{2}+z^{2}\right)=k^{2}$ will cut orthogonally if:
(A) $\mathrm{l}^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=\mathrm{p}^{2}$
(B) $\mathrm{al}^{2}+\mathrm{bm}^{2}+\mathrm{pn}^{2}=0$
(C) $\mathrm{ak}^{2}=\mathrm{bp}$
(D) $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{p}^{2}$
38. The general equation of a cone which passes through the axes is:
(A) $\mathrm{ax}^{2}+\mathrm{by}^{2}+\mathrm{cz} \mathrm{z}^{2}=0$
(B) $\mathrm{ax}^{2}+\mathrm{by}^{2}+\mathrm{cz}{ }^{2}=1$
(C) $\mathrm{fyz}+\mathrm{gzx}+\mathrm{hxy}=0$
(D) $\mathrm{fyz}+\mathrm{gzx}+\mathrm{hxy}=1$
39. The locus of the points of intersection of three mutually perpendicular tangent planes to the central conicoid $\mathrm{ax}^{2}+\mathrm{by}^{2}+\mathrm{cz}^{2}=1$ is a :
(A) circle
(B) sphere
(C) cone
(D) cylinder
40. The number of normals that can be drawn to the conicoid $\mathrm{ax}^{2}+\mathrm{by}^{2}+\mathrm{cz}^{2}=1$ from a given point in general is :
(A) six
(B) five
(C) three
(D) two
41. What is the value of $\int_{a}^{b} \frac{\log x}{x} d x$?
(A) $2 \log \left(\frac{b}{a}\right) \log (a b)$
(B) $2 \log \left(\frac{a}{b}\right) \log (a b)$
(C) $\frac{1}{2} \log \left(\frac{b}{a}\right) \log (a b)$
(D) $\frac{1}{2} \log \left(\frac{\mathrm{a}}{\mathrm{b}}\right) \log (\mathrm{ab})$
42. Which of the following is the value of the integral $\int \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right) d x$?
(A) $2 x \tan ^{-1} x-\log \left(1+x^{2}\right)+c$
(B) $2 x \tan ^{-1} x+\log \left(1+x^{2}\right)+c$
(C) $x \tan ^{-1} x-\frac{1}{2} \log \left(1+x^{2}\right)+c$
(D) $\mathrm{x} \tan ^{-1} \mathrm{x}+\frac{1}{2} \log \left(1+\mathrm{x}^{2}\right)+\mathrm{c}$
43. For any three vectors $\vec{a}, \vec{b}, \vec{c}$, what is the value of

$$
\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b}) ?
$$

(A) 3
(B) $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}$
(C) $\vec{a}+\vec{b}+\vec{c}$
(D) 0
44. $\nabla^{2} \gamma=$
(A) $\frac{1}{\gamma}$
(B) $\frac{2}{\gamma}$
(C) 2γ
(D) γ^{2}
45. Which of the following is the solution of the differential equation

$$
\frac{d y}{d x}+3 y=e^{2 x} ?
$$

(A) $y=(2 x+c) e^{-x^{2}}$
(B) $y=\frac{1}{5} e^{2 x}+c e^{-3 x}$
(C) $y=c x+2 e^{-x^{2}}$
(D) $\quad \mathrm{y}=\frac{1}{5} \mathrm{e}^{-3 \mathrm{x}}+\mathrm{ce}^{2 \mathrm{x}}$
46. For what value of ' a ' and ' b ' is the function a $e^{b x}$ particular integral of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+13 \frac{d y}{d x}+42 y=112 e^{x} ?
$$

(A) $\mathrm{a}=2, \mathrm{~b}=1$
(B) $\mathrm{a}=6, \mathrm{~b}=-1$
(C) $a=-4, b=2$
(D) $\mathrm{a}=1, \mathrm{~b}=2$
47. Which of the following is the value of $\frac{1}{\mathrm{D}^{2}+4}(\sin 2 \mathrm{x})$?
(A) $\frac{1}{4} \mathrm{x} \sin 2 \mathrm{x}$
(B) $-\frac{1}{4} x \sin 2 x$
(C) $-\frac{1}{4} x \cos 2 x$
(D) $\frac{1}{4} x \cos 2 x$
48. Which of the following is the complete primitive of the differential equation $p^{2}+p-6=0$, where $p=\frac{d y}{d x}$?
(A) $(y-2 x-c)(y+3 x-c)=0$
(B) $\left(y-2 x-c_{1}\right)\left(y+3 x-c_{2}\right)$
(C) $\left(y-3 x-c_{1}\right)\left(y+2 x-c_{2}\right)=0$
(D) $(y-3 x-c)(y+2 x-c)=0$
49. If $\mathrm{D}=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \ldots \ldots ., \alpha_{\mathrm{n}}\right)$ is a diagonal matrix of order n , then $\mathrm{D}^{\mathrm{p}}=$
(A) $\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \ldots \ldots . ., \alpha_{n}\right)$
(B) $\operatorname{diag}\left(\mathrm{p} \alpha_{1}, \mathrm{p} \alpha_{2}, \ldots . ., \mathrm{p} \alpha_{\mathrm{n}}\right)$
(C) $\operatorname{diag}\left(\alpha_{1}+p, \alpha_{2}+p, \ldots \ldots, \alpha_{n}+p\right)$
(D) $\quad \operatorname{diag}\left(\alpha_{1}{ }^{\mathrm{p}}, \alpha_{2}{ }^{\mathrm{p}}, \ldots \ldots, \alpha_{\mathrm{n}}{ }^{\mathrm{p}}\right)$
50. If A is a Skew-Hermitian matrix then the diagonal elements of A are all :
(A) zeros
(B) purely imaginary
(C) zeros or real
(D) zeros or purely imaginary
51. If X and Y are inversible matrices of the same order, then $X \cdot Y$ is inversible if and only if:
(A) $X=Y$
(B) $\mathrm{X}^{2}=\mathrm{Y}^{2}$
(C) $X Y=Y X$
(D) $\mathrm{X}^{2}+\mathrm{Y}^{2}=0$
52. How many square matrices A and B are there such that $\mathrm{AB}-\mathrm{BA}=\mathrm{I}$?
(A) finite
(B) infinite
(C) finite or infinite
(D) none
53. For what values of α nd β is the equation $\lambda^{3}-6 \lambda^{2}+\alpha \lambda-\beta=0$, the characteristics equation of the matrix $\left[\begin{array}{lll}1 & 2 & 5 \\ 0 & 2 & 4 \\ 0 & 0 & 3\end{array}\right]$?
(A) $\alpha=6, \beta=11$
(B) $\alpha=11, \beta=6$
(C) $\alpha=3, \beta=5$
(D) $\alpha=2, \beta=3$
54. What is the rank of the matrix $\left[\begin{array}{llll}1 & 0 & 0 & 4 \\ 0 & 1 & 5 & 6 \\ 1 & 3 & 2 & 1\end{array}\right]$?
(A) 4
(B) 3
(C) 2
(D) 1
55. If A is a 4×5 matrix with rank 3 , then the number of linearly independent solutions of the equation $A X=0$ is :
(A) 4
(B) 3
(C) 2
(D) 1
56. If $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots . . . \mathrm{C}_{\mathrm{n}}$ are the linearly dependent columns of a $\mathrm{m} \times \mathrm{n}$ matrix A of rank r , then:
(A) $r<n$
(B) $r>n$
(C) $r=n$
(D) None of the above holds
57. If $a_{1}, a_{2}, \ldots . ., a_{n}$ are the roots of the equation $x^{n}+n a x-b=0$, then $\left(a_{1}-a_{2}\right)\left(a_{1}-a_{3}\right) \ldots \ldots\left(a_{1}-a_{n}\right)=$
(A) $n a_{1}$
(B) $n a_{1}{ }^{n-1}$
(C) $(\mathrm{n}-1) \mathrm{a}$
(D) $\mathrm{n}\left(\mathrm{a}_{1}^{\mathrm{n}-1}+\mathrm{a}\right)$
58. If the roots of the equation $\mathrm{x}^{3}-\mathrm{px}^{2}+\mathrm{qx}-\mathrm{r}=0$ are in H.P., then the mean root is equal to:
(A) $\frac{3 p}{q}$
(B) $\frac{3 q}{p}$
(C) $\frac{3 r}{q}$
(D) $\frac{3 q}{r}$
59. Which of the following is the equation whose roots are the cubes of the roots of the equation $x^{3}+3 x^{2}+2=0$?
(A) $\mathrm{y}^{3}+33 \mathrm{y}^{2}+12 \mathrm{y}+8=0$
(B) $y^{3}+12 y^{2}+33 y+8=0$
(C) $\mathrm{y}^{3}+8 \mathrm{y}^{2}+12 \mathrm{y}+33=0$
(D) $\mathrm{y}^{3}+33 \mathrm{y}^{2}+8 \mathrm{y}+12=0$
60. What is the minimum number of imaginary roots which the equation $2 x^{7}-x^{4}+4 x^{3}-5=0$ can possess ?
(A) 2
(B) 3
(C) 4
(D) 5

Mathematics - 2010

1. Which of the following is true ?
I. As $x \rightarrow 0$, the infinitesimal $\log (1+x)$ is of higher order than the infinitesimal x
II. As $x \rightarrow 0$, the infinitesimal $\sqrt{x(1-x)}$ is of lower order than the infinitesimal x
(a) Ionly
(b) II only
(c) Both I and II
(d) None of the above
2. In the Lagrange's Mean Value theorem, what is the value of C if $f(x)=x^{3}-3 x^{2}+2 x$, $\mathrm{a}=0$ and $\mathrm{b}=1 / 2$?
(a) $1-\frac{\sqrt{3}}{3}$
(b) $1+\frac{\sqrt{21}}{6}$
(c) $1-\frac{\sqrt{21}}{6}$
(d) None of the above
3. What is the coefficient of x^{1} in the power series expansion of the function $\operatorname{Sin}^{1} x$:
(a) $\frac{1}{6}$
(b) $\frac{1}{3}$
(c) $\frac{1}{2}$
(d) Nonc of the above
4. Which of the following is the value of the limit:

$$
\lim _{x \rightarrow 0} \frac{\left(3 \tan x-3 x-x^{3}+x^{4} \sin x\right)}{x^{5}} ?
$$

(a) Non-existent
(b) $\frac{7}{5}$
(c) $\frac{2}{5}$
(d) None of the above
5. If P is the radius of curvature at any point P on the parabola $y^{2}=8 x$ and S is its focus, then what is the value of $\frac{\mathrm{P}^{2}}{(\mathrm{SP})^{2}}$?
(a) $\frac{1}{4}$
(b) $\frac{1}{2}$
(c) 4
(d) 2
6. Consider the curve $\mathrm{y}^{2}=(\mathrm{x}-\mathrm{a})(\mathrm{x}-\mathrm{b})(\mathrm{x}-\mathrm{c}), 0<\mathrm{a}<\mathrm{b}<\mathrm{c}$. Then which of the following is true?
I. The curve has no double points
II. A part of the curve lies to the left of the line $\mathrm{x}=\mathrm{a}$
(a) None
(b) Both I and II
(c) Ionly
(d) Ionly
7. If Z_{1} and Z_{2} are two complex numbers such that $\left|Z_{1}\right|^{2}+\left|Z_{2}\right|^{2}=5$, then what is the value of $\sqrt[t]{\left\{\left|Z_{1}+2 Z_{2}\right|^{2}+\left|2 Z_{1}-Z_{2}\right|^{2}\right\}}$?
(a) It cannot be determined by the given information
(b) $\sqrt{10}$
(c) 4
(d) 5
8. If $\sin \alpha+\sin \beta+\sin \gamma=0=\cos \alpha+\cos \beta+\cos \gamma$, then which of the following is the value of $M+N$ where $M=\sin (\alpha+\beta)+\sin (\beta+\gamma)+\sin (\gamma+\alpha)$ and $\mathrm{N}=\frac{\cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma}{\cos (\alpha+\beta+\gamma)}$?
(a) 3
(b) 1
(c) 0
(d) None of the above
9. Which of the following statements is true:
I. The sum of the $r^{\text {th }}$ powers of the $n^{\text {th }}$ roots of unity vanishes if r is a multiple of n
II. The product of the $\mathrm{n}^{\text {th }}$ roots of unity is $(-1) \mathrm{n}^{-1}$
(a) Ionly
(b) II only
(c) Both I and II
(d) None of the above
10. For what value of $\psi(\theta),-\frac{\pi}{2}<\theta<\frac{\pi}{2}, \log \left(1+\mathrm{e}^{2 \theta}\right)-i \theta=\psi(\theta)$?
(a) $\log (2 \cos \theta)$
(b) $i \theta$
(c) $\log (2 \sin \theta)+i \theta$
(d) None of the aboive
11. What is the value of $\tan ^{-1} 1+2 \tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}$?
(a) π
(b) $\frac{2 \pi}{3}$
(c) $\frac{\pi}{2}$
(d) None of the above
12. An equilateral triangle is inscribed in the parabola $y^{2}=2 x$, one of whose vertex is the vertex of the parabola. If a is the length of its sides, what is the value of a ?
(a) $4 \sqrt{3}$
(b) $2 \sqrt{3}$
(c) $\sqrt{3}$
(d) None of the above
13. If e is the eccentricity and l is the length of the latus rectum of the ellipse $9 x^{2}+25 y^{2}=225$, what is the value of the pair (e, l) ?
(a) $\left(\frac{4}{3}, \frac{50}{9}\right)$
(b) $\left(\frac{4}{3}, \frac{18}{5}\right)$
(c) $\left(\frac{4}{5}, \frac{50}{3}\right)$
(d) $\left(\frac{4}{5}, \frac{18}{5}\right)$
14. Which of the following is the equation of the hyperbola whose directrix is $2 x+y=1$, focus (1,1) and eccentricity $\sqrt{3}$?
(a) $\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}-2 \mathrm{y}-4=0$
(b) $5 x^{2}+5 y^{2}+4 x-2 y-1=0$
(c) $7 \mathrm{x}^{2}+2 \mathrm{y}^{2}-12 \mathrm{xy}-10 \mathrm{x}+8 \mathrm{y}+5=0$
(d) $7 x^{2}-2 y^{2}+12 x y-2 x+4 y-7=0$
15. For which of the following values of the pair $(\alpha, \beta), \alpha x+\beta y-3 z=5$ represents the equation of the plane passing through the points $(1,2,1)$ and $(-2,2,-1)$?
(a) $(3,2)$
(b) $(2,3)$
(c) $(-3,1)$
(d) None of the above
16. If the axes are rectangular and O is the origin, what is the equation of the plane through the point $P(2,3,-1)$ at right angles to $O P$?
(a) $3 x+2 y-z=11$
(b) $3 x-2 y+4 z+4=0$
(c) $2 x+3 y-z=14$
(d) None of the above
17. For which of the following values of the pair $(\alpha, \beta), \frac{x-3}{\alpha}=\frac{y+1}{\beta}=\frac{z-11}{4}$ is the equation of the perpendicular from $(3,-1,11)$ to the line $\frac{x}{2}=\frac{y-2}{3}=\frac{z-3}{4}$?
(a) $(1,-6)$
(b) $(6,-1)$
(c) $(4,5)$
(d) None of the above
18. What is the radius of the circular section of the sphere $x^{2}+y^{2}+z^{2}=41$ by the plane $2 x+3 y+z=5 \sqrt{14}$?
(a) $\sqrt{41}$
(b) 5
(c) $\sqrt{14}$
(d) 4
19. If $\mathrm{a}^{-1}+\mathrm{b}^{-1}+\mathrm{c}^{-1}=0$, what is the angle between the lines of intersection given by $x+y+z=0$ and the cone $a y z+b z x+c x y=0$?
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{6}$
(d) None of the above
20. What are the equations of the tangent planes of the conicoid $2 x^{2}-6 y^{2}+3 z^{2}=5$, which pass through the line $x+9 y-3 z=0,3 x-3 y+6 z-5=0$?
(a) $4 x-6 y+z=5$ and $4 x-9 y+2 z=5$
(b) $4 x+6 y-3 z=5$ and $5 x+15 y-z=5$
(c) $4 x+6 y+3 z=5$ and $2 x-12 y+9 z=5$
(d) None of the above
21. What is the value of the integral $\int_{0}^{1}\left(\frac{1-x^{2}}{1+\mathrm{x}^{2}}\right) \mathrm{dx}$?
(a) $\frac{\pi}{4}$
(b) $\frac{\pi}{2}+1$
(c) $\frac{\pi}{2}-1$
(d) None of the above
22. Which of the following is the value of the integral $\int_{0}^{\frac{y}{2}} \sin ^{3} x d x$?
(a) $\frac{2}{3}$
(b) $\frac{8}{3}$
(c) $\frac{10}{3}$
(d) None of the above
23. What is the value of the integral $\int_{0}^{1} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{1-x}} d x$?
(a) 0
(b) $\frac{1}{2}$
(c) 2
(d) None of the above
24. What is the entire length of the asteroid $x^{\frac{2}{3}}+y^{\frac{1}{3}}=4 b^{\frac{3}{3}}$?
(a) 6 b
(b) 12 b
(c) 24 b
(d) 48 b
25. Three vectors $\vec{a}=12 \vec{i}+4 \vec{j}+3 \vec{k}, \vec{b}=8 \vec{i}-12 \vec{j}-9 \vec{k}$ and $\vec{c}=33 \vec{i}-4 \vec{j}-24 \vec{k}$ define a parallelopiped. What is its volume?
(a) 3696
(b) 5915
(c) 9061
(d) None of the above
26. If $\vec{a}, \vec{b}, \vec{c}$ and $\vec{a}^{i}, \overrightarrow{b^{1}}, \overrightarrow{c^{1}}$ form a reciprocal system of vectors, then which of the following is true?

1. $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{a}^{\mathrm{i}}}+\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{b}^{1}}+\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{c}^{\mathrm{i}}}=1$
II. $\vec{a} \times \overrightarrow{a^{1}}+\vec{b} \times \overrightarrow{b^{1}}+\vec{c} \times \vec{c}^{\vec{i}}=0$
(a) Both I and II
(b) Ionly
(c) II only
(d) None of the above
2. The differential equation $\left(1+x^{2}\right)\left(\frac{d y}{d x}\right)-4 x^{2} \cos ^{2} y+x \sin 2 y=0$ can be reduced to the linear form by the transformation $z=$
(a) $1+x^{2}$
(b) $\cos ^{2} y$
(c) $\sin ^{2} y$
(d) $\tan y$
3. What is the value of $\left[\frac{1}{(D+3)^{2}}\right]\left(\mathrm{x}^{2}+1\right)$ where $\mathrm{D}=\frac{\mathrm{d}}{\mathrm{dx}}$?
(a) $4\left(x^{2}+3\right)^{2}$
(b) $\frac{1}{27}\left(3 \mathrm{x}^{2}-4 \mathrm{x}+5\right)$
(c) $\frac{1}{27}\left(3 x^{2}-x+2\right)$
(d) None of the above
4. Which of the following is the solution of the differential equation $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+\left(\frac{d y}{d x}\right)^{3}=0$?
(a) $y=x^{2}+C_{1} x+C_{2}$
(b) $\operatorname{Sin}\left(C_{1}-y\right)=C_{2} e^{-x}$
(c) $\sin \left(y+C_{1}\right)=C_{2} x$
(d) None of the above
5. For what value of the pair (α, β) Lagendre polynomial $P_{4}(x)=\frac{1}{8}\left(\alpha x^{4}-30 x^{2}+\beta\right)$?
(a) $(5,1)$
(b) $(25,3)$
(c) $(35,3)$
(d) None of the above
6. Let Q be a skew - symmetric matrix of order 3. For which of the following values of n, the matrix Q^{n} is a symmetric matrix of order 3:
(a) 6
(b) 7
(c) 9
(d) None of the above
7. Let $\mathrm{P}=\left[\begin{array}{rrr}2 & -1 & 3 \\ 0 & 2 & 0 \\ 2 & 1 & 1\end{array}\right]$ and $\mathrm{Q}=\left[\begin{array}{rrr}2 & 4 & -6 \\ 0 & \alpha & \beta \\ -4 & -4 & 4\end{array}\right]$.For which of the following values of the pair $(\alpha, \beta), Q=(\operatorname{adj} P)$?
(a) $(4,4)$
(b) $(-4,4)$
(c) $(0,-4)$
(d) $(-4,0)$
8. What is the rank of the matrix P^{3}, where $P=\left[\begin{array}{rrr}1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right]$?
(a) 3
(b) 2
(c) 1
(d) 0
9. Let $\mathrm{P}=\left[\mathrm{p}_{i j}\right]$ be a square matrix of order $\mathrm{n} \geq 2$. Then which of the following is true?
I. $\quad \operatorname{adj}(k P)=k(\operatorname{adj} P)$, where k is a scalar
II. $|\operatorname{adj} \mathrm{P}|=|\mathrm{P}|^{p-1}$, if $|\mathrm{P}| \neq 0$
(a) Ionly
(b) II only
(c) Both I and II
(d) None of the above
10. For what value of λ, the column vectors $X_{1}=\left[\begin{array}{l}6 \\ 5 \\ 4\end{array}\right], X_{2}=\left[\begin{array}{c}2 \\ \lambda \\ -1\end{array}\right], X_{3}=\left[\begin{array}{c}10 \\ 11 \\ 2\end{array}\right]$ are linearly dependent?
(a) -1
(b) 1
(c) 3
(d) None of the above
11. How many linearly independent solutions does the equation $6 x-5 y+4 z-3 t=21$ have?
(a) Three
(b) Two
(c) One
(d) None of the above
12. For what value of p , the polynomial $2 \mathrm{x}^{4}-7 \mathrm{x}^{3}+\mathrm{p}^{2} \mathrm{x}+15$ is divisible by $\mathrm{x}-3$?
(a) ± 2
(b) $\pm \sqrt{14}$
(c) 3
(d) None of the above
13. For which of the following values of k, the equation $x^{3}-9 x^{2}+24 x+k=0$, has a multiple root?
(a) -8
(b) -16
(c) 32
(d) None of the above
14. The equation $x^{n}-n x+n-1=0, n \geq 2$, is satisfied by $x=1$. What is the multiplicity of this root?
(a) morethan 3
(b) 3
(c) 2
(d) 1
15. How many roots does the equation $Z^{4}-2 Z^{3}+3 Z^{2}-4 Z+5=0$ have in the circle $|Z| \leq 1$?
(a) None
(b) One
(c) Two
(d) Four
16. Which of the following are true?
17. Every finite set of numbers is bounded
II. The set N of natural numbers is bounded above but not bounded below
III. The set Q of rational numbers is not bounded
(a) All I, II and III
(b) I and II only
(c) II and III only
(d) III and I only
18. Which of the following statements is true?
I. The set $\left\{\frac{1}{\mathrm{n}} ; \mathrm{n}=1,2,3, \ldots \ldots . ..\right\}$ has no limit point.
II. Every point of the set Z of all integers is a limit point of Z.
(a) Both I and II
(b) I only
(c) II only
(d) None of the above
19. The sequence $\left\{\mathrm{b}_{\mathrm{n}}\right\}$ where $\mathrm{b}_{\mathrm{n}}=\frac{1}{\mathrm{n}}\left\{1+2^{\frac{1}{2}}+3^{\dagger}+\ldots \ldots . .+\mathrm{n}^{\frac{1}{n}}\right\}$ converges to :
(a) 0
(b) 1
(c) e
(d) None of the above
20. Which of the following is true?
I. The series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+n}$ is convergent.
II. The series $\sum_{n=3}^{\infty} \frac{1}{n \log n(\log \log n)^{2}}$ is divergent.
(a) None
(b) Both I and II
(c) Ionly
(d) II only
21. If a function f is derivable on a closed interval $[\mathrm{a}, \mathrm{b}]$ with $\mathrm{f}^{\prime}(\mathrm{a}) \neq \mathrm{f}^{\prime}(\mathrm{b})$ and if k is a number lying between $f^{\prime}(a)$ and $f^{\prime}(b)$ then there exist at least on point C between a and b such that :
(a) $f(\mathrm{C})=\mathrm{k}$
(b) $\mathrm{f}^{\prime}(\mathrm{k})=\mathrm{C}$
(c) $\mathrm{f}^{\prime}(\mathrm{C})=\mathrm{k}$
(d) None of the above
22. What is the value of the integral $\int_{0}^{2} x[x] d x$, where $[x]$ is the largest integer less or equal to x ?
(a) $\frac{3}{2}$
(b) $\frac{7}{3}$
(c) $\frac{8}{3}$
(d) None of the above
23. What is the value of the simultaneous limit $\lim _{(x, y) \rightarrow(2,1)} \frac{\sin ^{-1}(x y-2)}{\tan ^{-1}(3 x y-6)}$?
(a) 0
(b) 1
(c) $\frac{1}{2}$
(d) $\frac{1}{3}$
24. If V is a function of two variables x and y then for what value of the pair (α, β),
$\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}-\frac{\partial^{2} V}{\partial x^{2}}=\alpha \frac{\partial^{2} V}{\partial \theta^{2}}+\beta \frac{\partial V}{\partial x}$ where $x=r \cos \theta$ and $y=r \sin \theta$:
(a) $\left(\frac{1}{r}, \frac{1}{r^{2}}\right)$
(b) $\left(\frac{1}{\mathrm{r}^{2}}, \frac{1}{\mathrm{r}}\right)$
(c) $\left(1, \frac{1}{r}\right)$
(d) None of the above
25. If $x y z=4(x+y+z)$, what is the minimum value of $y z+z x+x y$?
(a) 0
(b) 18
(c) 36
(d) None of the above
26. Which of the following is the value of the double integral $\iint_{E} \sqrt{x^{2}+y^{2}} d x d y$ where E is the region in the $x y$-plane bounded by $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$?
(a) $\frac{38 \pi}{3}$
(b) 5π
(c) $\frac{14 \pi}{3}$
(d) None of the above
27. What is the value of the triple integral $\iiint_{E} x y z d x d y d z$ where E is a domain bounded by $x=0, y=0, z=0$ and $x+y+z=1$?
(a) $\frac{1}{6}$
(b) $\frac{1}{24}$
(c) $\frac{1}{120}$
(d) $\frac{1}{720}$
28. Which of the following is true on Z , the set of all integers ?
I. The binary operation * on Z defined by $a * b=a^{2}+b^{2}$ is commutative as well associative.
II. The binary operation * on Z given bya * $b=2 a+b$ is neither commutative nor associative.
(a) Both I and II
(b) Ionly
(c) II only
(d) None of the above
29. Which of the following sets together with the respective binary operations defined on them are groups ?
I. The set $\mathrm{G}=\left\{2^{\mathrm{n}} ; \mathrm{n} \in \mathrm{Z}\right\}$ with the operation of ordinary multiplication.
II. The set Q of all rationals with the operation * defined bya* $b=a+b+a b, a$, b in Q .
(a) Both I and II
(b) Ionly
(c) II only
(d) None of the above
30. If a is a generator of a cyclic group G of order 8 , and if $\alpha=$ order of a^{3} and $\beta=$ order of a^{6}, then the pair $(\alpha, \beta)=$
(a) $(4,2)$
(b) $(4,8)$
(c) $(8,8)$
(d) $(8,4)$
31. Which of the following statements is true?
I. If p is the smallest prime factor of the order of a finite group G then any subgroup of index p is not always a normal subgroup.
II. A finite group G of even order has no element of order 2 .
(a) None
(b) Ionly
(c) II only
(d) Both I and II
32. Consider the ring $\mathrm{X}=\{0,1,2,3,4,5,6,7\}$ under the addition and multiplication modulo 8 . Which of the following is a unit of the ring X ?
(a) 2
(b) 3
(c) 4
(d) None of the above
33. Which of the following statements is true?
I. A matrix ring F_{n} over a field F is not always a simple ring.
II. A division ring is a simple ring.
(a) Both I and II
(b) Ionly
(c) II only
(d) None of the above
34. Let V be a vector space of all functions from R to R. If V_{1} is the subset of even functions and V_{2} the subset of odd functions then:
(a) V_{1} and V_{2} are not sub - spaces of V
(b) V_{1} and V_{2} are sub - spaces of V
(c) V_{1} is a sub - space of V but V_{2} is not a subspace of V
(d) V_{2} is a sub space of V but V_{1} is not a subspace of V
35. Let $\mathrm{V}=\{(\mathrm{a}, \mathrm{b}) ; \mathrm{a}, \mathrm{b} \in \mathrm{R}\}$. Let the operations of addition and scalar multiplication be given by :
I. $(\mathrm{a}, \mathrm{b})+(\mathrm{c}, \mathrm{d})=(0, \mathrm{~b}+\mathrm{d})$ and $\mathrm{k}(\mathrm{a}, \mathrm{b})=(0, \mathrm{~kb})$
II. $(\mathrm{a}, \mathrm{b})+(\mathrm{c}, \mathrm{d})=(\mathrm{a}+\mathrm{c}, \mathrm{b}+\mathrm{d})$ and $\mathrm{k}(\mathrm{a}, \mathrm{b})=(|k| a,|k| b)$.

Then V is a vector space under the operations defined by :
(a) I only
(b) II only
(c) Both I and II
(d) None of the above
60. The set W of all triads defined by $W=\{(x+y, 3 y, 2 x-y) ; x, y \in R\}$ is a subspace of $V_{3}(\mathrm{R})$. What is the dimension of W?
(a) 2
(b) 3
(c) 1
(d) None of the above

MATHEMATICS

1. For what value of the constant k, the infinitesimals $x^{5}-1$ and $k(x-1)$, as $x \rightarrow 1$, are equivalent ?
(a) Zero
(b) 1
(c) 3
(d) 5
2. Let $f(x)=e^{-\frac{1}{x}}$ when $x \neq 0$

$$
=0 \quad \text { when } x=0
$$

and let

$$
\begin{array}{rlr}
g(x) & =x \sin \frac{1}{x} \text { when } x \neq 0 \\
& =0 \quad \text { when } x=0
\end{array}
$$

then which of the following is true ?
(a) $f(x)$ and $g(x)$ are both continuous at $x=0$
(b) $f(x)$ is not continuous at $x=0$, but $g(x)$ is continuous at $x=0$
(c) $f(x)$ and $g(x)$ are both discontinuous at $x=0$
(d) None of the above
3. What is the coefficient of x^{3} in the power series expansion of the function :

$$
\log \left(\frac{1+x}{1-x}\right)^{\frac{1}{3}} \text { for }-1<x<1 ?
$$

(a) $\frac{2}{9}$
(b) $\frac{1}{9}$
(c) 2
(d) None of the above
4. Which of the following is the value of the limit

$$
\operatorname{Lt}_{x \rightarrow 0}^{\tan x-x+\frac{1}{3} x^{3}} x^{3} ?
$$

(a) 0
(b) $\frac{2}{15}$
(c) $\frac{1}{3}$
(d) $\frac{2}{3}$
5. For which of the following functions :
(l) $f(x)=1-(x-1)^{\frac{2}{3}}$ on $[0,2]$ and
(II) $f(x)=(x+1)^{2}(x-2)$ on $[-1,2]$,

Rolle's theorem is valid ?
(a) For both (I) and (II)
(b) For (I) only
(c) For (II) only
(d) None of the above
6. What is the curvature of the parabola $y^{2}=2 p x$ at the point $\left(\frac{p}{2}, p\right)$?
(a) $\frac{1}{2 \sqrt{2} p}$
(b) $\sqrt{2} p^{3}$
(c) $2 p^{\frac{3}{2}}$
(d) None of the above

Math.
7. For which of the following values of the pair (k, m), the straight line $k x+m$ is an obligue asymptote to the curve :

$$
y=\frac{x^{2}+2 x-1}{x} ?
$$

(a) $(1,0)$
(b) $(1,2)$
(c) $(2,2)$
(d) None of the above
8. If $\frac{(\mathbf{1}+i)^{9}}{(\mathbf{1}-i)^{7}}=\mathrm{P}+i \mathrm{Q}$,
then what is the value of P ?
(a) 0
(b) 4
(c) 2
(d) None of the above
9. If $\omega=\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}$, then which of the following is the value of $(1+\omega)^{3}$?
(a) -1
(b) 1
(c) i
(d) None of the above
10. For what value of the pair (α, β),

$$
\cos 40-8 \cos ^{4} \theta=\alpha \cos ^{2} \theta+\beta ?
$$

(a) $(1,1)$
(b) $(6,0)$
(c) $(8,0)$
(d) $(-8,1)$

Math.
11. If $\log (z)$ denotes the principal value of $\log (z)$ and n is an integer, then :

$$
\log (-7)-\log 7=
$$

(a) $2 n \pi$
(b) $n \pi i$
(c) $\quad(2 n+1) i \pi$
(d) None of the above
12. If $\mathrm{C}+i \mathrm{~S}=e^{i \theta}(2 \sin \theta)^{-\frac{1}{2}}(\sin \theta-i \cos \theta)^{-\frac{1}{2}}$, then which of the following is the value of S ?
(a) $\frac{\sin \left(\theta+\begin{array}{l}\pi \\ 2\end{array}\right)}{\sqrt{2 \sin \theta}}$
(b) $\frac{\sin \left(\frac{\theta}{2}+\frac{\pi}{4}\right)}{\sqrt{2 \sin \theta}}$
(c) $\frac{1}{\sqrt{2}} \cos \left(\frac{\theta}{2}+\frac{\pi}{4}\right)$
(d) None of the above
13. Which of the following is the equation of the chord of the parabola $y^{2}=8 x$ which is bisected at the point $(2,-3)$?
(a) $3 x+4 y+6=0$
(b) $4 x-3 y-17=0$
(c) $4 x-3 y+31=0$
(d) $4 x+3 y+1=0$

Math.
14. What is the pole of the line $2 x+y-1=0$ with respect to the ellipse

$$
\frac{x^{2}}{3}+\frac{y^{2}}{2}=1 ?
$$

(a) $(6,2)$
(b) $(18,4)$
(c) $(2 \sqrt{3}, \sqrt{2})$
(d) None of the above
15. Let $P(x, y)$ be a point on the hyperbola

$$
\frac{x^{2}}{4}-\frac{y^{2}}{3}=1
$$

If PS and PS' are focal distances of P(x,y), then $\left|P S^{\prime}-P S\right|=$
(a) 8
(b) 6
(c) 4
(d) None of the above
16. What is the length of the semi-major axis of the ellipse

$$
36 x^{2}+24 x y+29 y^{2}-72 x+126 y+81=0
$$

given that the centre is the point $(2,-3)$ and the semi-axes of the ellipse are connected by the equation

$$
\left(\frac{1}{5}-\frac{1}{r^{2}}\right)\left(\frac{29}{180}-\frac{1}{r^{2}}\right)=\frac{1}{225} ?
$$

(a) 9
(b) 3
(c) 2
(d) None of the above
17. Which of the following is the equation of the plane which meets the coordinate axes in $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ such that the centroid of the $\triangle \mathrm{PQR}$ is the point (l, m, n) ?
(a) $\frac{x}{l}+\frac{y}{m}+\frac{z}{n}=3$
(b) $\quad l x+m y+n z=3$
(c) $\quad l x+m y+n z=1$
(d) None of the above
18. Which of the following is the condition that the two spheres :

$$
x^{2}+y^{2}+z^{2}+2 u_{1} x+2 v_{1} y+2 w_{1} z+d_{1}=0
$$

and

$$
x^{2}+y^{2}+z^{2}+2 u_{2} x+2 v_{2} y+2 w_{2} z+d_{2}=0
$$

be orthogonal ?
(a) $u_{1} u_{2}+v_{1} v_{2}+w_{1} w_{2}=d_{1} d_{2}$
(b) $u_{1} u_{2}+v_{1} v_{2}+w_{1} w_{2}=\frac{d_{1} d_{2}}{2}$
(c) $u_{1} u_{2}+v_{1} v_{2}+w_{1} w_{2}=\frac{d_{1}+d_{2}}{2}$
(d) None of the above
19. What is the general equation of the cone of second degree which passes through the axes ?
(a) $f x^{2}+g y^{2}+h z^{2}=0$
(b) $f y z+g z x+h x y=0$
(c) $a x^{2}+b y^{2}+c z^{2}=f y z+g z x+h x y$
(d) None of the above

Math.
20. Which of the following is the equation of the plane which cuts the conicoid $x^{2}+4 y^{2}-5 z^{2}=1$ in a conic whose centre is at the point $(2,3,4)$?
(a) $x+4 y-5 z+4=0$
(b) $3 x+5 y-4 z-5=0$
(c) $x+4 y+2 z-22=0$
(d) $x+6 y-10 z+20=0$
21. What is the value of the integral

$$
\int_{0}^{1} \frac{x d x}{\sqrt{1-x^{4}}} ?
$$

(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{4}$
(c) $\frac{3}{2}$
(d) None of the above
22. For which of the following values of $\phi(x)$,

$$
\begin{gathered}
\int x^{m} \cos n x d x+\frac{m(m-1)}{n^{2}} \int x^{m-2} \cos n x d x \\
=\frac{x^{m-1} \phi(x)}{n^{2}} \text { where } m>2, n \geq 1 ?
\end{gathered}
$$

(a) $(m \sin n x+n \cos n x)$
(b) $n \cos n x-m \sin n x$
(c) $m x \cos n x+n(n-1) \sin n x$
(d) $m \cos n x+n x \sin n x$

Math.
P.T.O.
23. Given that

$$
\int_{0}^{1} \frac{\log (1+x)}{x} d x=\frac{\pi^{2}}{12} .
$$

What is the value of the integral

$$
\int_{0}^{1} \frac{\log x}{1+x} d x ?
$$

(a) $-\frac{\pi^{2}}{12}$
(b) $\frac{\pi^{2}}{6}$
(c) $\frac{\pi}{12}$
(d) None of the above
24. For what value of $\phi(x)$,

$$
\int_{a}^{b} \phi(x) d x
$$

gives the length of the arc for the curve $y=f(x)$ between two points whose abscissa are a and b where $f^{\prime}(x)$ is continuous and single valued in the range (a, b) ?
(a) $\left\{1+\left(f^{\prime}(x)\right)^{2}\right\}^{\frac{3}{2}}$
(b) $\quad\left\{f(x)+f^{\prime}(x)\right\}^{\frac{1}{2}}$
(c) $\left\{1+\left(f^{\prime}(x)\right)^{2}\right\}^{1 / 2}$
(d) None of the above
25. The necessary and sufficient condition for a vector function $\vec{f}(t)$ to have constant direction is :
(a) $\quad \vec{f}+\frac{\vec{d} f}{d t} \times \frac{\overrightarrow{d^{2}} f}{d t^{2}}=0$
(b) $\vec{f} \times \frac{\overrightarrow{d f}}{d t}=0$
(c) $\vec{f} \cdot \frac{\vec{d} f}{d t}=0$
(d) None of the above
26. If \vec{f} and \vec{g} are continuously differentiable vector point functions, then : $\operatorname{curl}(\vec{f} \times \vec{g})+(\vec{f}, \nabla) \vec{g}-(\vec{g}, \nabla) \vec{f}=$
(a) $\vec{f} \operatorname{div} \vec{g}-\vec{g} \operatorname{div} \vec{f}$
(b) $\vec{f} \times$ curl $\vec{g}+\operatorname{curl} \vec{f} \times g$
(c) $\vec{f} \cdot \operatorname{curl} \vec{g}-\vec{g} \cdot \operatorname{curl} \vec{f}$
(d) None of the above
27. Which of the following is the integrating factor of the differential equation :

$$
(1+x) \frac{d y}{d x}-x y=1-x ?
$$

(a) $e^{-\frac{x^{2}}{2}}$
(b) e^{-x}
(c) $-x+e^{1+x}$
(d) $e^{-x}(1+x)$
28. What is the value of

$$
\left(\frac{1}{\mathrm{D}^{2}-5 \mathrm{D}+6}\right) x e^{x} ?
$$

(a) $\quad e^{x}(6 x-5)$
(b) $\frac{e^{x}}{2}\left(5 x^{2}+6 x+1\right)$
(c) $\frac{e^{x}}{4}(2 x+3)$
(d) None of the above
29. Which of the following transformations reduce the differential equation :

$$
x p^{2}-2 y p+x+2 y=0, \text { where } p=\frac{d y}{d x}
$$

to Clairaut's form?
(a) $x^{2}=u, y^{2}=v$
(b) $x^{2}=u, y-x=0$
(c) $x+y=u, x y=v$
(d) None of the above
30. If $\mathrm{P}_{n}(x)$ denote Legendre's polynomials for different values of positive integer n, then for what value of $\psi(n)$:

$$
\mathbf{P}_{n+1}^{\prime}(x)-\mathbf{P}_{n-1}^{\prime}(x)=\psi(n) P_{n}(x) ?
$$

(a) $2 n$
(b) $n+1$
(c) $2 n+1$
(d) None of the above

Math.
31. Let

$$
G=\left[\begin{array}{ccc}
1 & 1 & 3 \\
0 & 1 & -1 \\
2 & 0 & -4
\end{array}\right]
$$

If $\mathbf{H}=$ adjoint of G , what is :

$$
[\mathrm{H}]_{22}+[\mathrm{H}]_{32} \text { equal to ? }
$$

(a) -8
(b) 12
(c) -12
(d) None of the above
32. Let Q be a skew-symmetric matrix of order three, then which of the following is always true ?
(a) Q^{2} and Q^{3} are both skew-symmetric matrices
(b) Q^{2} and Q^{3} are both symmetric matrices
(c) Q^{2} is a skew-symmetric matrix but Q^{3} is a symmetric matrix
(d) Q^{2} is a symmetric matrix but Q^{3} is a skew-symmetric matrix
33. Let

$$
G=\left[\begin{array}{ccc}
2 & 3 & 4 \\
1 & 2 & 3 \\
-1 & 1 & 2
\end{array}\right] \text { and } H=\left[\begin{array}{ccc}
1 & 3 & 0 \\
-1 & 2 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

then what is the trace GH?
(a) 30
(b) 11
(c) 13
(d) None of the above
34. For what value of β,

$$
\lambda^{3}-12 \lambda^{2}+\beta \lambda-32=0
$$

is the characteristic equation of the matrix

$$
\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right] ?
$$

(a) 36
(b) 46
(c) 38
(d) None of the above
35. How many linearly independent solutions does the equation

$$
7 x+6 y-11 z+14=0
$$

have ?
(a) None
(b) One
(c) Two
(d) Three
36. For what value of λ, the column vectors

$$
X_{1}=\left[\begin{array}{l}
7 \\
5 \\
3
\end{array}\right], X_{2}=\left[\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right], X_{3}=\left[\begin{array}{c}
11 \\
\lambda \\
0
\end{array}\right]
$$

are linearly dependent ?
(a) 4
(b) 16
(c) -3
(d) None of the above

Math.
37. Every polynomial equation of degree $2 n+1, n \geq 1$, with real coefficients always has :
(a) no real roots
(b) $2 n$ real roots
(c) n real roots
(d) at least one real root
38. Given that $x=-\frac{3}{2}$ is a root of the equation

$$
4 x^{3}+12 x^{2}+11 x+3=0
$$

what are its other two roots ?
(a) $-1,2$
(b) $1, \frac{1}{2}$
(c) $-1,-\frac{1}{2}$
(d) None of the above
39. If $\mathrm{P}(\mathrm{z})=z^{3}+3 \mathrm{~Hz}+\mathrm{G}$ and $\mathrm{G}^{2}+4 \mathrm{H}^{3}$ is negative, then the cuibic equation $P(z)=0$ always has :
(a) all the three roots equal
(b) two equal roots
(c) one real and two complex roots
(d) all the three roots real
40. If α, β, γ are the roots of the equation

$$
x^{3}-9 x^{2}+14 x+24=0
$$

what is the value of $1+\sum \frac{1}{\alpha}$?
(a) $\frac{5}{12}$
(b) $\frac{19}{12}$
(c) $\frac{10}{9}$
(d) None of the above

Math.
41. Consider the set

$$
\mathrm{S}=\left\{\frac{2 n+1}{n} ; n \in \mathbf{N}\right\} .
$$

If l is the supremum and g is the infimum of the set S, then which of the following is true ?
(a) l belongs to S whereas g does not
(b) g belongs to S whereas l does not
(c) $\quad l$ and g both belong to S
(d) None of the above
42. The sequence $\left\{\mathrm{S}_{n}\right\}$ where

$$
\mathbf{S}_{n}=\frac{(-1)^{n-1}}{n!}, n \in \mathbf{N},
$$

is :
(a) not bounded but has one limit point
(b) bounded but has no limit point
(c) bounded and has only one limit point
(d) bounded and has two limit points
43. Let $\sum_{1}^{\infty} u_{n}$ be a positive term series such that:

$$
\frac{u_{n}}{u_{n+1}}=\alpha+\frac{\beta}{n}+\frac{\gamma_{n}}{n^{p}},
$$

where $\alpha>0, p>1$ and $\left\{\gamma_{n}\right\}$ is a bounded sequence, then for $\alpha \neq 1$. which of the following is true?
(a) $\sum_{1}^{\infty} u_{n}$ converges if $\alpha<1$ and diverges if $\alpha>1$ whatever β may be
(b) $\quad \sum_{1}^{\infty} u_{n}$ converges if $\alpha>1$ and diverges if $\alpha<1$ for all real β
(c) $\sum_{1}^{\infty} u_{n}$ converges if $\beta<1$ and diverges if $\beta>1$ for all real $\alpha \neq 1$
(d) None of the above

Math.
44. Let the function $f(x)$ be defined by

$$
\begin{aligned}
f(x) & =1 \text { when } x \text { is irrational } \\
& =-1 \text { when } x \text { is rational, }
\end{aligned}
$$

then $f(x)$ is :
(a) continuous at every point
(b) discontinuous at every point
(c) continuous at rationals and discontinuous at irrationals
(d) none of the above
45. If $[x]$ denotes the greatest integer not greater than x, then what is the value of the integral

$$
\int_{0}^{3}[x] d x ?
$$

(a) Does not exist
(b) Zero
(c) $\frac{9}{2}$
(d) 3
46. Let $f(x)=\sin x, x \in[0, t]$ where $t \leq \frac{\pi}{2}$. Consider a partition

$$
p=\left\{0, \frac{t}{n}, \frac{2 t}{n}, \frac{3 t}{n}, \ldots, n \frac{t}{n}\right\}
$$

of the interval $[0, t]$. Then which of the following is equal to $\frac{n}{t}\{L(p, f)\}$?
(a) $\left(\sin \frac{t}{n}\right)-\frac{n}{t} \cos t$
(b) $\cos \frac{t}{n}+\cos \frac{2 t}{n}+\ldots+\cos \frac{n t}{n}$
(c) $\sin \frac{t}{n}+\sin \frac{2 t}{n}+\ldots+\sin (n-1) \frac{t}{n}$
(d) $\sin \frac{t}{n}+\sin \frac{2 t}{n}+\ldots+\sin \frac{n t}{n}$

Math.
47. Let $f(x, y)=x \sin \left(\frac{1}{y}\right)+y \sin \left(\frac{1}{x}\right), x y \neq 0$

$$
=0 \quad, x y=0
$$

then what is the value of the limit $\lim _{(x, y) \rightarrow(0,0)} f(x y)$?
(a) Does not exist
(b) ∞
(c) 2
(d) Zero
48. Let $f(x, y)=\frac{x^{2} y^{2}}{x^{2}+y^{2}},(x, y) \neq(0,0)$

$$
=0, \quad x=y=0
$$

If $l=f_{x}(0,0)$ and $m=f_{x}(2,1)$, what is the value of the pair (l, m) ?
(a) $\left(0, \frac{4}{25}\right)$
(b) $(0,1)$
(c) $\left(0, \frac{4}{5}\right)$
(d) None of the above
49. If $x=r \cos \theta$ and $y=r \sin \theta$, which of the following is equal to the pair $\left(\frac{\partial r}{\partial x}, \frac{\partial \theta}{\partial y}\right)$?
(a) $\left(\sec \theta, \frac{\sec \theta}{r}\right)$
(b) $\left(\sec \theta, \frac{\cos \theta}{r^{2}}\right)$
(c) $\left(\cos \theta, \frac{\cos \theta}{r}\right)$
(d) None of the above

Math.
50. If

$$
\mathrm{F}(x, y)=x^{2}+y^{2}+\lambda\left(x^{2}+8 x y+7 y^{2}-225\right),
$$

then what is the value of $d^{2} \mathrm{~F}$ at $\lambda=-\frac{1}{9}$ where $\frac{\partial \mathrm{F}}{\partial x}=0$ and $\frac{\partial \mathrm{F}}{\partial y}=0$?
(a) $\frac{4}{9}\left(4(d x)^{2}+(d y)^{2}\right)$
(b) $\frac{4}{9}(2 d x-d y)^{2}$
(c) $\frac{16}{9}(d x)^{2}$
(d) None of the above
51. What is the value of the double integral

$$
\iint_{\mathrm{R}}\left(x^{2}+y^{2}\right) d x d y
$$

where $\mathbf{R}=\left\{(x, y) ; x^{2}+y^{2} \leq \sqrt{2}\right\}$?
(a) π
(b) 2π
(c) $2 \sqrt{2} \pi$
(d) Nonc of the above
52. Which of the following is the value of the triple integral

$$
\iiint_{\mathrm{R}} x y z d x d y d z
$$

where

$$
\mathrm{R}=\{(x, y, z) ; 0<z<y, 0<y<x, 0<x<1\} ?
$$

(a) $\frac{1}{8}$
(b) $\frac{1}{24}$
(c) $\frac{1}{48}$
(d) None of the above
53. Let Z_{1} be the set of all non-negative integers and Q_{1} be the set of all nonzero rational numbers, then which of the following is true ?
(a) Z_{1} is not a group under addition composition but Q_{1} is a group under multiplication composition
(b) Q_{1} is not a group under multiplication composition but Z_{1} is a group under addition composition
(c) Z_{1} and Q_{1} are groups under the composition of addation and multiplication respectively
(d) None of the above
54. Let Z be the additive group of integers and let H_{q} denote the set of all multiples of a positive integer t then which of the following is true ?
(a) H_{15} is not a subgroup of Z but H_{19} is a subgroup of Z
(b) H_{15} is a subgroup of Z but H_{19} is not a subgroup of Z
(c) Both H_{15} and H_{19} are not subgroups of Z
(d) Both H_{15} and H_{19} are subgroups of Z

Math.
55. Let Z be the set of all integers and $G=\{1,-1\}$. Here G is a group under multiplication. Define a mapping

$$
f: Z \rightarrow \mathrm{G}
$$

by putting $f(n)=1$ if n is even and $f(n)=-1$ if n is odd. Then which of the following is true ?
(a) $\quad f(m+n) \neq f(m) f(n)$ for all m, n in Z
(b) $f(m+n)=f(m) f(n)$ for all m, n in Z but f is not onto
(c) $f(m+n)=f(m) f(n)$ for all m, n in Z and f is also onto
(d) None of the above
56. What is the number of distinct cycles of length 4 in S_{9}, the symmetric group of degree 9 ?
(a) 3024
(b) 126
(c) 36
(d) 756
57. A ring with unity is called a division ring if :
(a) it has proper zero divisors
(b) its all non-zero elements form a group under multiplication
(c) its all non-zero elements form a group under addition
(d) None of the above

Math.
P.T.O.
58. Let

$$
\mathbf{R}_{1}=\left\{\left.\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right] \right\rvert\, a \in \mathbf{R}\right\},
$$

where R is a ring. Define a mapping $f: R_{1} \rightarrow R$ by

$$
f\left(\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]\right)=a \text { for all }\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right] \in \mathrm{R}_{1}
$$

then which of the following is true ?
(a) $f(\mathrm{X}+\mathrm{Y}) \neq f(\mathrm{X})+f(\mathrm{X})$ for all X, Y in R_{1}
(b) $f(\mathrm{XY}) \neq f(\mathrm{X}) f(\mathrm{Y})$ for all X, Y in R_{1}
(c) $\quad f(\mathrm{XY}) \neq f(\mathrm{X}) f(\mathrm{Y})$ but $f(\mathrm{X}+\mathrm{Y})=f(\mathrm{X})+f(\mathrm{Y})$ for all X ; Y in R_{1}
(d) $f(\mathrm{XY})=f(\mathrm{X}) f(\mathrm{Y})$ and $f(\mathrm{X}+\mathrm{Y})=f(\mathrm{X})+f(\mathrm{Y})$ for all X, Y in R_{1}
59. Let $\mathrm{P}=\mathrm{R}[x]$ and let $f(x), g(x) h(x), k(x) \in \mathrm{P}$ be such that

$$
f(t)=1, g(t)=t, h(t)=t^{2}, k(t)=1+t+t^{2}
$$

for all $t \in R$, then which of the following is true ?
(a) $f(x), g(x), h(x), h(x)$ are linearly independent
(b) $f(x), g(x), h(x)$ are linearly independent
(c) $f(x), g(x), h(x)$ are linearly dependent
(d) None of the above
60. Let C be the field of complex numbers. We can regard C as a vector space over itself. Define T:C $\rightarrow \mathrm{C}$ such that :

$$
\mathrm{T}(\mathrm{Z})=x \text { for any } \mathrm{Z}=x+i y, x, y \in \mathrm{R},
$$

then which of the following is true ?
(a) $\mathrm{T}((2+i) \cdot(2-i)) \neq(2+i) \mathrm{T}(2-i)$
(b) $\mathrm{T}((2+i)(2-i))=(2+i) \mathrm{T}(2-i)$
(c) $T\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}\right) \neq \mathrm{T}\left(\mathrm{Z}_{1}\right)+\mathrm{T}\left(\mathrm{Z}_{2}\right)$, where $\mathrm{Z}_{1}=x_{1}+i y_{1}, \mathrm{Z}_{2}=x_{2}+i y_{2}, x_{1}, x_{2}, y_{1}$, $y_{2} \in \mathrm{R}$
(d) None of the above

HOME SCIENCE

1. Polyandry refers to :
(A) one man marrying one woman
(B) one man marrying more than one woman
(C) one woman marrying more than one man
(D) none of the above
2. A value of variable which divides the series in such a manner that number of items below it is equal to the number of items above it, is called :
(A) Mean
(B) Mode
(C) Median
(D) . Average
3. Which of the following is not a measure of dispersion ?
(A) Range
(B) Mean Deviation
(C) Standard Deviation
(D) Class Interval
4. The UN resolution on discrimination against women was adopted in :
(A) 1967
(B) 1963
(C) 1975
(D) 1981
5. Who was the Chairman of Indian Education Commission ?
(A) D.S. Kothari
(B) J.P. Naik
(C) Hamid Ansari
(D) None of the above

Home Sc.
1
P.T.O.
6. Integration of pupils with learning difficulties into regular class rooms for all or a part of school day is called :
(A) Guidance
(B) Mainstreaming
(C) Counselling
(D) Directing
7. Down's syndrome refers to :
(A) Nutritional Deficiency
(B) Infection
(C) Temp. Shock
(D) Chromosomal Abnormality
8. Which of the following are known as protective foods ?
(A) Fruits
(B) Fats and oils
(C) Cereals
(D) All of the above
9. Which of the following should necessarily be supplied through diet ?
(A) Short chain fatty acids
(B) Long chain fatty acids
(C) Essential fatty acids
(D) Non-essential fatty acids
10. Which of the following is a water soluble vitamin ?
(A) Vit. E
(B) Vit. D
(C) Vit. A
(D) Vit. C

Home Sc.
13. Major part of wheat flour is obtained from which part of the seed ?
(A) Endosperm
(B) Germ
(C) Aleuron layer
(D) Scutellum
12. Which of the following are filamentous?
(A) Bacteria
(B) Yeast
(C) Fungi
(D) None of the above
13. Who is the basic functionary in a community development programme ?
(A) Gram Sewak
(B) $\quad \mathrm{BDO}$
(C) District Collector
(D) None of the above
14. In Panchayati Raj, the Sarpanch is elected by :
(A) People
(B) Panchayat Members
(C) MLAs
(D) Nominated by DC
15. In a communication model, which of the following is the first element of communication ?
(A) Treatment
(B) Message
(C) Sender
(D) Channel

Home Sc.
16. Symposia are the examples of :
(A) Mass approach
(B) Group approach
(C) Individual approach
(D) None of the above
17. Which of the following statements about a poster is false ?
(A) Always write captions vertically
(B) Bring out the message clearly
(C) Use bright attractive colours
(D) It should recommend action
18. Film projectors are included in :
(A) Reflected projectors
(B) Indirect projectors
(C) Direct projectors
(D) None of the above
19. Which of the following have a background of coloured cloth ?
(A) White board
(B) Black board
(C) Bulletin board
(D) All of the above
20. Which of the following is not a poverty alleviation programme ?
(A) NREP
(B) TRYSEM
(C) IRDP
(D) ICDS

Home Sc.
21. Which of the following is not a component of staffing ?
(A) Placement
(B) Transfers
(C) Directing
(D) Training
22. Write the odd one :
(A) Knowledge
(B) Money
(C) Skills
(D) Interest
23. The measurement of the amount of light emitted by a bulb is called its :
(A) Lumen
(B) Watt
(C) Wattage
(D) Reflection
24. Which of the following soil types can bear maximum pressure of building on it?
(A) Hard clay
(B) Sandy clay
(C) Sandy loams
(D) Moist soils
25. Which of the following statements pertain to organismic theory/heories of child development?
(A) Psychological structures exist inside
(B) Change is stimulated by environment
(C) Both the above
(D) None of the above

Home Sc.
26. Directly observable features of a person are known as :
(A) Prototype
(B) Phenotype
(C) Gehotype
(D) Karyotype
27. Each cell in our body contains :
(A) 23 pairs of genes
(B) 46 pairs of genes
(C) 23 pairs of chromosomes
(D) 46 pairs of chromosomes
28. Which of the following is an X linked disease ?
(A) Hemophilia
(B) Cystic fibrosis
(C) PKU
(D) Sickle Cell Anemia
29. Palmer grasp disappears at the age of :
(A) 2 years
(B) 18 months
(C) 1 year
(D) 3-4 months
30. An organized pattern of physical growth and motor control that proceeds head to tail is called :
(A) Cephalocaudal trend
(B) Cephalothoracic trend
(C) Proximodistal trend
(D) Dynamic systems theory

Home Sc.
31. A standard of fairness in which individuals express the same concern for the welfare of others as they do for themselves is known as :
(A) Reciprocity
(B) Autonomous morality
(C) Realism
(D) Heteronymous morality
32. Vishwa Bharati at Shantiniketan was established by :
(A) Gandhiji
(B) Rabindranath Tagore
(C) G.K. Gokhale
(D) Jawahar Lal Nehru
33. The feeling of satisfaction which a person derives out of the use of a good or service is called :
(A) Psychic income
(B) Real income
(C) Money income
(D) None of the above
34. Which of the following acts protects consumers from hazards of food adulteration?
(A) Dangerous Drug Act
(B) Weights and Measurement Act
(C) FPO
(D) PFA
35. In which of the following the return is in the form of profit?
(A) Bonds
(B) Shares
(C) Both the above
(D) None of the above

Home Sc.
P.T.O.
36. Windows placed on the walls raised above the roof to allow light and air is called :
(A) Clerestory
(B) Ventilator
(C) Exhaust
(D) Aerator
37. Which of the following is an alkaline salt of fatty acid ?
(A) Washing soda
(B) Detergents
(C) Disinfectants
(D) Soaps
38. Which of the following is used as an egg beater ?
(A) Whisks
(B) Mixers
(C) Grinders.
(D) All of the above
39. Which of the following is not a component of a refrigerator ?
(A) Beater
(B) Compressor
(C) Expansion valve
(D) Gasket
40. The ironing surface of an electric iron is known as :
(A) Sole plate
(B) Hot plate
(C) Heating mantle
(D) Thermoregulator

Home sc.
41. Which of the following is the more appropriate appliance to heat a Samosa or a patti ?
(A) Hot air oven
(B) Microwave oven
(C) BOD incubator
(D) Toaster
42. Which of the following is not a primary colour ?
(A) Red
(B) Yellow
(C) Blue
(D) Green
43. Staple is associated with :
(A) Dimensions of fibre
(B) Elasticity of fibre
(C) Colour of fibre
(D) All of the above
44. Cotton is an example of \qquad fibre.
(A) Protein
(B) Mineral
(C) Celiulosic
(D) Thermoplastic
45. The process of pressing the fabric to smooth out wrinkles and add sheen to it is known as :
(A) Beetling
(B) Embossing
(C) Sanforising
(D) Calendering

Home Sc.
46. Which of the following is not used for solubility test of fibres ?
(A) Ethanol
(B) Acetone
(C) Phenol
(D) Conc. Sulphuric acid
47. Which of the following absorbs moisture readily ?
(A) Linen
(B) Cotton
(C) Nylon
(D) Non-difference
48. Which of the following laundry blues are insoluble in water ?
(A) Ultramarine
(B) Prussian blue
(C) Methylene blus
(D) Coal tar dyes
49. Energy required by the body when lying at rest in a comfortable environment, mentally relaxed and without food is known as :
(A) RDI
(B) SDA
(C) RDA
(D) BMR
50. Which of the following yieids highest energy in the body?
(A) Vitamins
(B) Carbohydrates
(C) Protein
(D) Fat

Home Sc.
51. Calcium requirements increase in :
(A) Third trimester of pregnancy
(B) Second trimester of pregnancy
(C) First trimester of pregnancy
(D) Do not change
52. Protein requirement during infancy (first 6 months) is :
(A) $10 \mathrm{~g} / \mathrm{kg}$ body weight
(B) $15 \mathrm{~g} / \mathrm{kg}$ body weight
(C) $5 \mathrm{~g} / \mathrm{kg}$ body weight
(D) $2 \mathrm{~g} / \mathrm{kg}$ body weight
53. Which of the following is a monosaccharide ?
(A) Glucose
(B) Lactose
(C) Sucrose
(D) Maltose
54. Which of the following is starch ?
(A) Lactose
(B) Cellulose
(C) Pectin
(D) Amylopectin
55. Which of the following is a saturated fatty acid ?
(A) Palmitic acid
(B) Oleic acid
(C) Linoleic acid
(D) Linolenic acid

Home Sc.
P.T.O.
56. Which of the following is a sulphur containing amino acid ?
(A) Cystein
(B) Cystine
(C) Methionine
(D) All of the above
57. Enzymes are in nature.
(A) Proteins
(B) Carbohydrates
(C) Fats
(D) None of the above
58. Which of the following need metabolic energy ?
(A) Diffusion
(B) Passive transport
(C) Active transport
(D) All of the above
59. Which of the following catalyse blood clotting ?
(A) Calcium
(B) Fluoride
(C) Copper
(D) All of the above
60. National Institute of Nutrition (NIN) is located at :
(A) Hyderabad
(B) Bangalore
(C) Mysore .
(D) Delhi

Home Sc.

HOME SCIENCE

1. Which of the following statements is not true about ovum :
(A) Contains 23 chromosomes
(B) Develops in ovaries
(C) Elongated with a fine hair like tail
(D) Contains yolk
2. In human development, the germinal stage lasts for \qquad after fertilization.
(A) 10 days- 10 weeks
(B) 10 days -2 weeks
(C) 4 weeks- 6 weeks
(D) 12 weeks- 20 weeks
3. An average baby can walk with help at the age of :
(A) 6-8 months
(B) 4-6 months
(C) 16-18 months
(D) 9-11 months
4. A child starts making use of holophrases at the age of :
(A) 1 year
(B) 2 years
(C) 6 months
(D) 4 months

Hom. Sc.
5. The psychosocial theory of personality development was given by :
(A) Erik Erikson
(B) Sigmund Freud
(C) Yarrow
(D) Pederson
6. A child is in anal stage from :
(A) $11 / 2-3$ years
(B) Birth-1 $1 / 2$ years
(C) 3-4 years
(D) 4-5 years
7. Slanting eyes is a feature of :
(A) Cretinism
(B) Microcephaly
(C) Mongolism
(D) Albinism
8. A child plays independently among other children and does not influence or modify the activity of other children. The play is :
(A) Solitary independent play
(B) Associative play
(C) Parallel play
(D) Organized supplementary play

Hom. Sc.
9. When parents try to control their children's bebaviour and make them conform to a set and usually absolute standard of conduct, they are :
(A) Authoritarian parents
(B) Authoritative parents
(C) Permissive parents
(D) None of the above
10. Enuresis refers to :
(A) Sleeplessness
(B) Bed wetting;
(C) Down's syndrome
(D) Night blindness
11. Resilience refers to \qquad of fiber.
(A) Flexibility
(B) Strength
(C) Water absorption
(D) Springiness
12. Which of the following methods is used for determining hair weight of textiles?
(A) Clegg's method
(B) Winson's method
(C) A.S.T.M. method
(D) All of the above

Hom. Sc.
13. Fells are the fabrics made by :
(A) Passing one set of yarns above and below another
(B) Twisting many fibers about each other
(C) Looping one yarn about itself
(D) Uniting loose fibers
14. The number of units of weight in a unit of length is given by :
(A) Denier
(B) Plies
(C) Crimp
(D) None of the above
15. Which of the following is a cellulosic material ?
(A) Cotton
(B) Silk
(C) Wool
(D) None of the above
16. Which of the following needs weight and height for its calculation ?
(A) BMR
(B) BMI
(C) PER
(D) BV

Hom. Se.
17. Which of the following is not used for anthropometric methods of nutritional assessment ?
(A) Height
(B) Mid arm circumference
(C) Head circumference
(D) Haemoglobin
18. The major objective of mid day meal programme is :
(A) To provide minerals to infants
(B) To provide vit. D to pregnant ladies
(C) To provide protein to poor children
(D) To reduce school dropouts
19. Potable water refers to :
(A) Water that can be transported
(B) Water which contains minerals
(C) Water which is safe for drinking
(D) Water which contains pathogens
20. Which of the following pertains to food adulteration ?
(A) PFA
(B) $\quad \mathrm{FPO}$
(C) MFPO
(D) All of the above
21. Which of the following is a water soluble vitamin ?
(A) Vit. A
(B) Vit. C
(C) Vit. D
(D) All of the above
22. Which of the following components of wheat grain contributes to flour ?
(A) Endosperm
(B) Germ
(C) Epicotyle
(D) Hypocotyle
23. Which of the following is a pome fruit ?
(A) Apple
(B) Grapes
(C) Banana
(D) Strawberry

Hom. Sc.
24. Which of the following is comprised of glucose and galactose ?
(A) Sucrose
(B) Lactose
(C) Maltose
(D) None of the above
25. Which of the following undergoes saponification ?
(A) Fatty acids
(B) Glycogen
(C) Cellulose
(D) Pectin
26. Which of the following is the activity of management ?
(A) Planning
(B) Organizing
(C) Leading
(D) All of the above
27. The lumen is the measurement of :
(A) Light emitted
(B) Power consumed
(C) Heat emitted
(D) All of the above
28. A continuous magnet is embedded in the gasket of the refrigerator :
(A) To attract metallic pieces from food
(B) To prevent chilling injury
(C) To hold the door of refrigerator tightly
(D) To reduce the temperature
29. The sole plate of electric iron is coated with :
(A) Chromium
(B) Silver
(C) Iron
(D) Foam
30. An education which is institutional activity, subject oriented, full time and leads to certificates and degrees is called :
(A) Technical education
(B) Extension education
(C) Non-formal education
(D) Formal education
31. Rural reconstruction institute was started by Rabindra Nath Tagore at :
(A) Lucknow
(B) Gurgaon
(C) Shantiniketan
(D) Delhi

Hom. Sc.
32. Which of the following is not a characteristic of extension ?
(A) Cooperative
(B) Informal
(C) Nonflexible
(D) Voluntary
33. Any change of behaviour which takes place as a result of experience may be called :
(A) Learning
(B) Formal education
(C) Adult education
(D) None of the above
34. Polyandry refers to :
(A) A man marrying more than one wife
(B) A woman marrying more than one husband
(C) Having many children
(D) All of the above

Hom. Sc.
9
P.T.O.
35. Which of the following defined communication as "Process by which two or more people exchange ideas, facts, feelings or impressions in" a way that each gains common understanding of message" ?
(A) Leagans
(B) Coleman
(C) Schramm
(D) Loomis
36. Tick the odd one out :
(A) Frequency curves
(B) Frequency polygons
(C) Continuous curves
(D) Pictograms
37. Free radicle theory pertains to :
(A) Aging
(B) Child development
(C) Infancy
(1) Adolescence

Hom. Sc.
38. Insomnia refers to :
(A) Lack of appetite
(B) Lack of thirst
(C) Inability to sleep
(D) Inability to breathe
39. The greek word 'geron' means :
(A) Old man
(B) Young man
(C) Young woman
(D) Infant
40. Zygote refers to :
(A) Male sex cell
(B) Female sex cell
(C) Cell formed as a result of fertilization
(D) None of the above
41. Neonate is the baby in :
(A) First month of life
(B) First year of life
(C) First two years of life
(D) First three years of life
42. The first conference on women was held in :
(A) 1975
(B) 1965
(C) 1955
(D) 1985
43. In India, the community development programme was launched in :
(A) 1975
(B) 1965
(C) 1947
(D) 1952
44. Krishi Vigyan Kendras are established by :
(A) ICAR
(B) ICMR
(C) ICCR
(D) NIN
45. Which of the following is an audio-visual aid ?
(A) Poster
(B) Radio
(C) Television
(D) Black-board

Hom. Sc.
46. Which of the following is not a poverty alleviation programme ?
(A) IRDP
(B) JRY
(C) NREP
(D) ICDS
47. Which of the following is an unsaturated fatty acid ?
(A) Caproic acid
(B) Caprylic acid
(C) Capric acid
(D) Oleic acid
48. Which of the following contains a pyrole ring ?
(A) Carotene
(B) Vit. C
(C) Sucrose
(D) Hemoglobin
49. The sequence of amino acids linked by peptide bonds refers to which of the following structures of protein ?
(A) Primary
(B) Secondary
(C) Tertiary
(D) Quaternary

Hom. Sc.
50. The non-protein organic component of enzymes is called :
(A) Zymogen
(B) Prosthetic group
(C) Apoenzyme
(D) Isozyme
51. Fat is stored in :
(A) Adipose tissue
(B) Neural tissue
(C) Muscle tissue
(D) Epithelial tissue
52. Hemoglobin contains :
(A) Iron
(B) Magnesium
(C) Calcium
(D) All of the above

Hom. Sc.
53. Glomerulus is present in :
(A) Axon
(B) Neuron
(C) Dendron
(D) Nephron
54. Fundus is a part of :
(A) Kidney
(B) Stomach
(C) Lung
(D) Brain
55. Which of the following is associated with dental caries :
(A) Iodide
(B) Chloride
(C) Fluoride
(D) Bromide
56. National Institute of Nutrition is affiliated to :
(A) ICMR
(B) UGC
(C) ICAR
(D) None of the above
57. Demonstrating the jam making rural women is an example of :
(A) Method demonstration
(B) Result demonstration
(C) Technical demonstration
(D) All of the above
58. Which of the following is Vit. C ?
(A) Calciferol
(B) Tocopherol
(C) Ascorbic acid
(D) β-carotene
59. Which of the following is most suitable for delivering a lecture ?
(A) MS word
(B) MS Axel
(C) MS Power Point
(D) MS Access
60. Which of the following is used in jam making ?
(A) Gelatin
(B) Starch
(C) Pectin
(D) All of the above

Hom. Sc.

