	(4)
00710	
MAITO	
00110	

~	D 7	
S. Fe	MO.	000000000000000000000000000000000000000
LLE	7 400	6656666666666666666666666

ENTRANCE TEST-2020

SCHOOL OF ENGINEERING B.TECH. LATERALENTRY

Total Questions	6	60		 		
Time Allowed	:	70 Minutes	Roll No.:			

Instructions for Candidates

- 1. Write your Roll Number in the space provided at the top of this page of Question Booklet and fill up the necessary information in the spaces provided on the OMR Answer Sheet.
- 2. OMR Answer Sheet has an Original Copy and a Candidate's Copy glued beneath it at the top. While making entries in the Original Copy, candidate should ensure that the two copies are aligned properly so that the entries made in the Original Copy against each item are exactly copied in the Candidate's Copy.
- 3. All entries in the OMR Answer Sheet, including answers to questions, are to be recorded in the Original Copy only.l
- 4. Choose the correct / most appropriate response for each question among the options A, B, C and D and darken the circle of the appropriate response completely. The incomplete darkened circle is not correctly read by the OMR Scanner and no complaint to this effect shall be entertained.
- 5. Use only blue/black ball point pen to darken the circle of correct/most appropriate response. In no case gel/ink pen or pencil should be used.
- 6. Do not darken more than one circle of options for any question. A question with more than one darkened response shall be considered wrong.
- 7. There will be 'Negative Marking' for wrong answers. Each wrong answer will lead to the deduction of 0.25 marks from the total score of the candidate.
- 8. Only those candidates who would obtain positive score in Entrance Test Examination shall be eligible for admission.
- 9. Do not make any stray mark on the OMR sheet.
- 10. Calculators and mobiles shall not be permitted inside the examination hall.
- 11. Rough work, if any, should be done on the blank sheet provided with the question booklet.
- 12. OMR Answer sheet must be handled carefully and it should not be folded or mutilated in which case it will not be evaluated.
- 13. Ensure that your OMR Answer Sheet has been signed by the Invigilator and the candidate himself/herself.
- 14. At the end of the examination, hand over the OMR Answer Sheet to the invigilator who will first tear off the original OMR sheet in presence of the Candidate and hand over the Candidate's Copy to the candidate.

Turn over

Lateral Entry Paper (Year 2020)

- Q1. The Energy operator \hat{E} is given by
 - a. $-i\hbar \partial/\partial t$
 - b. $-i\hbar \partial/\partial x$
 - c. $\hbar \partial/\partial x$
 - d. ih $\partial/\partial t$
- Q2. Wien's Displacement Law is given by
 - a. $\lambda_{max}T = 1.898 \times 10^{-3} mK$
 - b. $\lambda_{max}T = 2.898 \times 10^{-3} mK$
 - c. $\lambda_{max}T = 3.898 \times 10^{-3} mK$
 - d. $\lambda_{max}T = 4.898 \times 10^{-3} mK$
- Q3. Find the maximum wavelength associated with a black body at a temperature of 2.7 K?
 - a. 1.1 mm
 - b. 2.2 mm
 - c. 3.3 mm
 - d. 3.1 mm
- Q4. The ultra violet catastrophe occurs at
 - a. Short wavelengths
 - b. Long wavelengths
 - c. Lower frequencies
 - d. None of the above
- Q5. The Compton effect is given by
 - a. $\Delta \lambda = \lambda_c (1 + \cos \Phi)$
 - b. $\Delta \lambda = \lambda_c (1 \sin \Phi)$
 - c. $\Delta \lambda = \lambda_c (1 \cos \Phi)$
 - d. $\Delta \lambda = \lambda_c (1 + \sin \Phi)$
- Q6. The zero point energy of a harmonic oscillator is
 - a. 0
 - b. hv
 - c. 0.5hv
 - d. 1.5hv
- O7. The Hamiltonian operator is given by

 - a. $\frac{-\hbar^2}{m} \frac{\partial}{\partial x} + U_{(x)}$ b. $\frac{-\hbar^2}{2} \frac{\partial^2}{\partial x^2} + U_{(x)}$ c. $\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + U_{(x)}$ d. $\frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + U_{(x)}$

- Q8. For an electron revolving in any orbit, the Bohr's quantization condition states that
 - a. $mvr = \frac{nh}{4\pi}$
 - b. $mvr = \frac{\frac{4\pi}{nh}}{2\pi}$
 - c. $mvr = \frac{nh}{\pi}$
 - d. $mvr = \frac{nh}{3\pi}$
- Q9. The molecule which possess Trigonal bipyramidal geometry with See Saw shape is
 - a. NH₃
 - b. SF₄
 - c. ICl₃
 - d. N.O.A
- Q10. How many number of unpaired electrons are present in NO molecule?
 - a. 3
 - b. 2
 - c. 1
 - d. Zero
- Q11. Thermoplastic polymers are having properties like
 - a. Reversibility
 - b. Permanent hardness
 - c. a and b
 - d. N.O.A
- Q12. If the functional groups in a polymer are arranged randomly around the main chain
 - a. Isotactic polymer
 - b. Atactic polymer
 - c. Syndiotactic polymer
 - d. All
- Q13. In NMR spectroscopy the compound used as reference standard is
 - a. $Pb(C_2H_5)_4$
 - b. $Si(CH_3)_4$
 - c. Trimethyl toluene
 - d. All
- Q14. ESR (electron paramagnetic resonance) spectroscopy is used to detect
 - a. Anions
 - b. Cations
 - c. Free radicals
 - d. N.O.A

Q15. The high value of aniline point indicates

- a. High Aromaticity
- b. Low Aromaticity
- c. Intermediate Aromaticity
- d. N.O.A

Q16. To avoid corrosion of machine parts, the acid value of a good lubricating oil must be

Q22. Wha

a.

023.

a.

b.

C.

Q24. TI

b.

- a. Very high
- b. Very low
- c. Moderate
- d. N.O.A

Q17. If
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 - 4)y = 0$$
, then $x = 0$ is

- a. a regular singular point of the equation
- b. an irregular singular point of the equation
- c. an ordinary point of the equation
- d. None of these

Q18. What is the general solution of the partial differential equation Pp+Qq=R.

- $\emptyset(u,v)=1$
- $\emptyset(u,v) = -1$
- $\emptyset(u,v)=0$ C.
- d. None of these

Q19. What is the general solution of the equation $2zy\frac{\partial z}{\partial x} + zx\frac{\partial z}{\partial y} = 3xy.$

$$2zy\frac{\partial z}{\partial x} + zx\frac{\partial z}{\partial y} = 3xy.$$

- $f(x^2 2y, \ y z) = 0$
- $3y^2 z^2 = f(x^2 2y^2)$ b.
- $x^2 2y = f(y^2 z^2)$ c.
- None of these

Q20. What is the singular solution of the partial differential equation z = px + qy + pq.

- $a. \quad z = ax + by + ab$
- b. z = 2xy
- c. z = -xy
- d. None of these

Q21. The sum of roots of the auxiliary equation of the differential equation
$$(D^4 - 5D^2 + 4)y = 0$$
 is

- a. 0
- b. 1
- c. 2
- d. 3

Q22. What is the particular integral of the equation

$$(D+2)(D-1)^3y = e^x$$

a.
$$xe^x$$

b.
$$\frac{1}{18}x^3e^x$$

c.
$$\frac{1}{5}e^{x}$$

nust be

None of these

Q23. The complimentary function of the equation $(D^3 - D^2 - 6D)y = x^2 + 1$ is

a.
$$c_1 e^x + c^2 e^{3x} + c_3 e^{2x}$$

b.
$$c_1 e^{-2x} + c_2 e^{3x}$$

c.
$$c_1 + c_2 e^{-2x} + c_3 \dot{e}^{3x}$$

d. None of these

Q24. The partial differential equation

$$\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2}$$
 is

One dimensional heat equation

b. Two dimensional heat equation

Two dimensional wave equation C.

d. Two dimensional Laplace equation

Q25. What is current flowing through a 2Ω resistor connected to 1A current source?

Q 26. What is impedance at Resonance?

a.
$$0 \Omega$$

Q27. Ohms law is applicable to

- Linear systems
- b. Non linear systems
- C. Both a & b
- d. None of these

Q28. If the length of resistance R is uniformly stretched to 10 times its original value its new resistance is

b.	0.007s				
c.	0.1257s				
d.	0.215s				
O30. Impe	edance of a capacitor	r for ω=0 is equa	l to		
a.	Zero				
b.	Infinity				
C.	Finite value				
d.	None of the above				
031. An e	electric iron draws 24	A at 150V. Its co	nductance will be		
a.	75 Siemen				
b.	0.0133 Siemen				
c.	75 ohm				
d.	0.0133 ohms.				
$(8t^2+4t-2)$ a.	$8t^3 + 2t^2 - 2 A$	owing through an	n element if the char	ge flow is giv	en by $q(t) =$
b.	16t+4 A 8t+2 A				
c. d.	16t ² +4t A				
α.	10t +4t A				
	ence band and condu	action band over	lap in:		
	letal				
	emiconductor				
	sulator				
d. A	ll of the above				
	ence band and Cond Ietal	luction band are	far apart in:		
18.845 90.000					
	emiconductor				
	nsulator				
d. A	Ill of the above				

Q29. Find the period of the sinusoidal ac voltage v(t)= 12Cos(50t+10°)

0.115s

Q35. A semiconductor which is not doped is:

a. Extrinsicb. P-typec. N-typed. Intrinsic

Q36. A semiconductor which is doped by trivalent impurity is: a. N-type b. P-type c. Intrinsic d. None of the above	
Q37. A capacitor is used after a rectifier for: a. Boosting b. Attenuating c. Amplifying d. Smoothing	
Q38. CC configuration of transistor has: a. High Current Gain b. High Input Resistance c. High Output Resistance d. Both (a) and (b)	
Q39. CB configuration of transistor has: a. High Voltage Gain b. High Output Resistance c. Both (a) and (b) d. None of the above	
Q40. Which of the following medium is used between CPU & RAM to speed up the process power of a CPU? a. Cache Memory b. Virtual Memory c. D RAM d. Flash Memory	sing
Q41. Which of the following is the port number for Telnet? a. 20 b. 21 c. 22 d. 23	
Q42. Which of the following is default permission set for ordinary files? a. rwxrwxrwx b. rw-rw-rw- c. r-r-r- d. rw-rw-rwx	- Car

```
Q43. Static memory allocation is typically performed during:
   a. Compilation
   b. Execution
   c. Loading
   d. Linking
Q44. If c is initialized to 1, how many times following loop is executed
       while((c>0)&&(c<60))
               c++;
       a. 60
       b. 59
       c. 61
       d. 1
Q45. What is the output of the following code?
       main()
        {
               int n = 10;
               switch (n)
               {
                      default:
                             printf("I am Default \t'');
                       Case 15:
                             printf("I am 15 \t");
                       Case 20:
                              printf("I am 20 \t");
        a. I am 15
        b. I am 20
        c. I am Default I am 15 I am 20
         d. I am Default
```

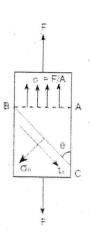
```
Q46. What is the output of the following program?

main()
{

int i;

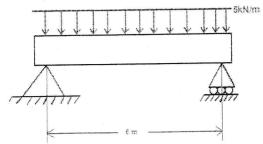
for(i=1;i<5;i++)

{


if(i==4)

break;

printf("%d",i);
}

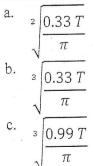

a. 12345
b. 124
c. 1245
d. 123
```

Q47. If an axial tensile load of 105 Kn is acts on a circular bar of cross-section A m^2 , then what is the value of shear stress, τ_{θ} on a plane BC ($\theta = 50.6^{\circ}$) on which the values of the normal stress, σ_{θ} is 50 MN/m^2 .



- a. $40.5/A Kn/m^2$
- b. $40.9/A MN/m^2$
- c. $51.5/A \ Kn/m^2$
- d. $51.5/A MN/m^2$
- Q48. If the poison's ratio is given by $\frac{\textit{Laterial contraction}}{\textit{Longitudional elongation}}$, then
 - a. Longitudional elongation is negative strain and Laterial contraction is a positive strain
 - b. Longitudional elongation is positive strain and Laterial contraction is a negative strain
 - c. Longitudional elongation is negative strain and Laterial contraction is a negative strain
 - d. None of the above

Q49. What is the cross-sectional area of 6 m long beam subjected to uniform loading of 5 kN/m, if the maximum shear stress τ_{max} is given by $1.5 \frac{V}{A}$, where V is the vertical shear?


- a. $1500 \, mm^2$
- b. $2,000 \, mm^2$
- c. $2.500 \, mm^2$
- d. 3,000 mm²
- Q50. What is the moment of inertia for the rectangular plane shown in figure about x-x axis?

- a. 1800000 mm⁴
- b. 7200000 mm⁴
- c. 5000000 mm⁴
- d. 3600000 mm⁴
- Q51. The steel bar shown in the figure is initially at 20°C. If it is heated to a temperature of 50°C, then which of the following statements is correct? The Young's Modulus and Coefficient of thermal expansion of steel are 'E' and 'α' respectively.

- a. Both thermal stress and thermal strain will be zero.
- b. Thermal stress will be zero and thermal strain will be $30 E\alpha$.
- c. Thermal stress will be 30 $E\alpha$ and thermal strain will be zero.
- d. Both thermal stress and thermal strain will be 30 $E\alpha$.
- Q52. What is the diameter of the shaft when the torque (twisting moment) T produces the maximum shear stress of 48 N/mm^2

d.
$$\sqrt[2]{\frac{0.99 \, T}{\pi}}$$

Q53. The location of center of gravity or the centroid represent a balance between

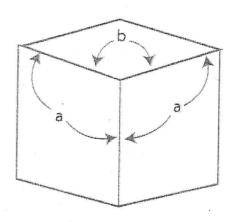
a. the sum of moments of all the parts of the system and the moment of the "resultant" for the system.

b. the sum of forces of all the parts of the system and the moment of the "resultant" for the system.

c. the sum of moments of all the parts of the system and the forces of the "resultant" for the system.

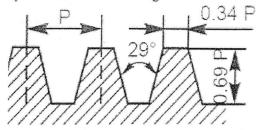
d. All of the above

Q54. A line in the first quadrant is parallel to horizontal plane and inclined to the vertical plane. Which of the following statements is correct?


a. True length of the line can be seen in top view only.

b. True length of the line can be seen in front view only.

c. True length of the line can be seen in both front and top view.

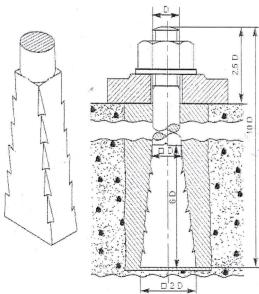

d. True length of the line can be seen neither in front view nor in top view.

Q55. The drawing shown below represents which kind of axonometric view, where 'a' and 'b' represent the angles between the axes.

- a. Isometric
 - b. Dimetric
 - c. Trimetric
 - d. None of the above

Q56. The screw thread profile shown in the figure below is

- a. Square
- b. Buttress
- c. Knuckle
- d. Acme


Q57. Consider a solid cylinder with its base resting on horizontal plane. The cylinder is cut by a section plane perpendicular to vertical plane and inclined at 45° to horizontal plane. The sectional side view will be a/an

- a. Circle
- b. Ellipse
- c. Parabola
- d. Hyperbola

Q58. What will be the length of the edge of a cube in isometric projection, if the true length of the edge is 30 cm?

- a. 30.00 cm
- b. 36.80 cm
- c. 27.34 cm
- d. 24.45 cm

Q59. The foundation bolt shown in the figure below is

- a. Rag Foundation Bolt
- b. Eye Foundation Bolt
- c. Lewis Foundation Bolt
- d. Bent Foundation Bolt

Q60. Which of the following bearings is used to resist radial load on shafts?

- a. Collar thrust bearing
- b. Journal Bearing
- c. Foot-Step bearingd. None of the Above

- 1. The Normality of 0.3 M Phosphoric acid (H₃PO₃) 5. is:
 - (A) 0.1
 - (B) 0.9
 - (C) 0.3
 - (D) 0.6
- 2. Two solutions of a substance (non electrolyte) are mixed in the following manner. 480 ml of 1.5 M first solution +520 ml of 1.2 M second solution. What is the molarity of the final mixture?
 - (A) 2.7 M
 - (B) 1.34 M
 - (C) 1.50 M
 - (D) 1.20 M
- 3. The pKa of acetyl salicylic acid (aspirin) is 3.5. The pH of gastric juice in human stomach is about 2-3 and pH in the small intestine is about 8. Aspirin will be:
 - (A) unionized in the small intestine and in the stomach
 - (B) completely ionized in the small intestine and in the stomach
 - (C) ionized in the stomach and almost unionized in the small intestine
 - (D) ionized in the small intestine and almost unionized in the stomach
- 4. The ionic product of the water changes when:
 - (A) an acid is added to it
 - (B) a base is added to it
 - (C) either a base or an acid is added to it
 - (D) temperature is raised

- The boiling point of P-nitrophenol is higher than that of o-nitrophenol because:
 - (A) NO₂ group at *P*-position behaves in a different way from that at *o*-position
 - (B) intramolecular hydrogen bonding exits in *P*-nitrophenol
 - (C) intermolecular hydrogen bonding exits in P-nitrophenol
 - (D) P-nitrophenol has a higher molecular weight than o-position
- 6. What is the dominant intermolecular force or bond that must be overcome in converting liquid CH₃OH to a gas?
 - (A) Dipole-Dipole interactions
 - (B) Covalent bond
 - (C) Hydrophilic interactions
 - (D) Hydrogen bonds
- 7. The enthalpy of vaporization of liquid is 30kJ mol⁻¹ and entropy of vaporization is 75J mol⁻¹ K. The boiling point of the liquid at 1 atm is:
 - (A) 250 K
 - (B) 400 K
 - (C) 450 K
 - (D) 600 K
- 8. The difference between heats of reaction at constant pressure and constant volume for the reaction:

$$2C_6H_{6(I)} + 15O_{2(g)} \longrightarrow 12CO_{2(g)} + 6H_2O_{(I)}$$
 at 25°C in kJ is:

- (A) -7.43
- (B) +3.72
- (C) -3.72
- (D) +7.43

- 9. Aspartic acid and lysine in proteins are linked 13. All of the following organelles can be isolated from together by:
 - (A) Glycosidic bond
 - (B) Peptide bond
 - (C) Phosphodiester bond
 - (D) Ester bond
- Which of the following is a Dipeptide?

(B)
$$H_2N - \dot{C} - \dot{C} - \dot{N} - \dot{C} - \dot{C$$

The illustration shown below is which nitrogen 11. base?

- (A) Thymine
- (B) Guanine
- (C) Uracil
- (D) Cytosine
- 12. Which of the following is correct?
 - (A) A=T
 - (B) C=G
 - (C) G=A
 - (D) A=C

- the cells in their intact form except:
 - (A) Endoplasmic Reticulum
 - (B) Nucleus
 - (C) Mitochondria
 - (D) All of the above
- 14. Function of Golgi apparatus in animals include:
 - (A) Exocytosis of thyroxine hormone
 - (B) Exocytosis of melanin
 - (C) Sorting and packaging
 - (D) All of the above
- 15. Clathrin coated pits are associated with:
 - (A) Phagocytosis
 - (B) Pinocytosis
 - (C) Receptor mediated endocytosis
 - (D) Exocytosis
- Which of the following does not occur within mitochondria?
 - (A) Glycolysis
 - (B) Krebs cycle
 - (C) Electron transport chain
 - (D) ATP synthesis
- 17. The beta-oxidation of a molecule of palmitic acid:
 - (A) Yields 8 molecules of acetyl Co-A
 - (B) Yields 16 molecules of acetyl Co-A
 - (C) Yields 32 molecules of acetyl Co-A
 - (D) Yields carbon dioxide and water only
- It is very important to feed the baby very soon after the birth because during the first few hours after birth the enzyme phosphoenolpyruvate carboxykinase is present in very low amounts, and this fact inhibits the:
 - (A) Glycogenolysis
 - (B) Gluconeogenesis
 - Glycogenesis
 - (D) Glucose Phosphorylation

- 19. The amino acids are said to be ketogenic when the 24. carbon skelton is finally degraded to:
 - (A) Succinyl-CoA
 - (B) Fumarate
 - (C) Acetyl-CoA
 - (D) Pyruvate
- 20. Lesch-Nyhan syndrome, the sex linked, recessive absence of HGPRTase, may lead to:
 - (A) Compulsive self destructive behaviour with elevated levels of urate in serum
 - (B) Hypouricemia due to liver damage
 - (C) Failure to thrive and megaloblastic anemia
 - (D) Protein intolerance and hepatic encephalopathy
- 21. In metabolism, NAD is involved in:
 - (A) Spontaneous reaction
 - (B) Elimination reaction
 - (C) Redox reactions
 - (D) None
- 22. The effect of increased levels of hydrogen ions in the inter-membrane space of the mitochondria is:
 - (A) Increased ATP production
 - (B) Decreased levels of oxidative phosphorylation
 - (C) Increased levels of water in inter-membrane space
 - (D) Decreased levels of chemiosmosis
- 23. Which of the following *is not* a feature of oxidative phosphorylation?
 - (A) Direct transfer of phosphate from a substrate molecule to ADP
 - (B) An electrochemical gradient across the inner mitochondrial membrane
 - (C) A membrane bound ATP synthase
 - (D) A proton motive force

- 24. A child has accidentally ingested a chemical and has presented with high fever. The chemical is known to affect the ATP formation in electron transport chain, which among the following could cause the similar manifestations?
 - (A) Cyanide
 - (B) 2,4 Dinitrophenol
 - (C) Malonate
 - (D) Rotenone
- 25. 5'-Terminus of mRNA molecule is capped with:
 - (A) Guanosine triphosphate
 - (B) 7-Methylguanosine triphosphate
 - (C) Adenosine triphosphate
 - (D) Adenosine diphosphate
- 26. Introns in genes:
 - (A) Encode the amino acids which are removed during post-translational modification
 - (B) Encode signal sequences which are removed before secretion of the proteins
 - (C) Are the non-coding sequences which are not translated
 - (D) Are the sequences that intervene between two genes
- 27. $3'\rightarrow 5'$ Exonuclease activity of DNA polymerase I:
 - (A) Removes ribonucleotides
 - (B) Adds deoxyribonucleotides
 - (C) Corrects errors in replication
 - (D) Hydrolyses DNA into mononucleotides
- 28. The first amino acyl tRNA which initiates translation in prokaryotes is:
 - (A) Methtionyl tRNA
 - (B) Formylmethionyl tRNA
 - (C) Tyrosinyl tRNA
 - (D) Alanyl tRNA

- 29. Which of the following is a palindromic sequence?
 - (A) 5'-ATGCAG-3'
 - (B) 3'-TACGTC-5'
 - (C) 5'-CGAAGC-3'
 - (D) 3'-GCTTCG-5'
- 30. Genomic libraries are made from:
 - (A) DNA of an organism
 - (B) Total RNA of an organism
 - (C) mRNA of an organism
 - (D) cDNA of an organism
- 31. To clone into a plasmid vector, both the plasmid and foreign DNA are cut:
 - (A) With the same restriction enzymes and mixed together
 - (B) With different restriction enzymes and mixed together
 - (C) With the same proteases and mixed together
 - (D) With different protease and mixed together
- 32. Which of the following vector(s) was extensively used for human genome project?
 - (A) Plasmid
 - (B) Yeast artificial chromosome
 - (C) Cosmid
 - (D) (B) and (C)
- 33. Innate immunity involves all except:
 - (A) Phagocytosis
 - (B) Anatomic Barriers
 - (C) Inflammatory Mechanism
 - (D) Antibody production
- 34. T cells can recognize:
 - (A) Free antigens
 - (B) Antigens bound to cells
 - (C) Antigens bound to antibodies
 - (D) Antigens bound to MHC proteins

- 35. Which of the following statements is true?
 - (A) All immunogens are antigens but all antigens are not immunogens
 - (B) All immunogens are antigens and all antigens are immunogens
 - (C) All immunogens are not antigens but all antigens are immunogens
 - (D) All immunogens are proteins and all proteins are immunogens
- 36. The following is characteristic of B-but not T-cells:
 - (A) Class I MHC
 - (B) CD3
 - (C) Polyclonal activation by concanavalin A
 - (D) Surface immunoglobulin
- 37. DNA polymerase of T. aquatics is preferred to that of E. coli in PCR because:
 - (A) It replicates DNA more efficiently
 - (B) It doesn't require primers
 - (C) It is not denatured at the melting temperature of DNA
 - (D) It doesn't cause errors in replication
- 38. A particular protein in a mixture can be detected by:
 - (A) Southern blotting
 - (B) Northern blotting
 - (C) Western blotting
 - (D) None of these
- 39. What is the role of SDS in SDS PAGE?
 - (A) Protein denaturation and imparting net negative charge
 - (B) Imparting overall negative charge to the protein
 - (C) Imparting equal mass to all the proteins
 - (D) Protein unfolding and imparting net negative charge

- 40. Using a standard curve, it you know the absorbance 46. of an unknown sample, what else can be determined about the unknown?
 - (A) The wavelength of maximum absorbance
 - (B) The molecular weight of the sample
 - (C) The concentration of the sample
 - (D) The identity of the sample
- 41. The most important example of point mutation is found in a disease called:
 - (A) Thalassemia
 - (B) Night blindness
 - (C) Sickle cell anemia
 - (D) Down's syndrome
- 42. A mother of blood group O has a group O child, the father could be of blood type:
 - (A) A or B
 - (B) AB only
 - (C) A or B or O
 - (D) Oonly
- 43. If inheritance of disease to next generation is only possible through females. The probable inheritance is:
 - (A) Sex-linked
 - (B) Mendelian
 - (C) Organellar
 - (D) Autosomal
- 44. In a genetic test, 9:7 ratio in F2 generation represents:
 - (A) Epistasis
 - (B) Co-dominance
 - (C) Incomplete dominance
 - (D) Complete dominance
- 45. Source of EEG is:
 - (A) A potential of pyramidal cells
 - (B) A potential of ganglion cells
 - (C) EPSP and IPSP of cortical cells which behave like dipoles
 - (D) After potential of Parietal cortex

- 46. In a 30 year old woman evaluated for infertility, the following data are obtained on a blood sample obtained on 21st day of her menstrual cycle: estradiol, TSH, Prolactin and progesterone. Which of the following would best indicate if this cycle was ovulatory or not?
 - (A) Estradiol
 - (B) Prolactin
 - (C) Progestrone
 - (D) TSH
- 47. A low auxin: cytokinin ratio leads to:
 - (A) Shoot formation
 - (B) Root formation
 - (C) Fruit formation
 - (D) All of the above
- 48. Starch content of potatoes can be increased by using a bacterial gene, known as:
 - (A) Sucrose phosphate synthase gene
 - (B) ADP glucose pyrophosphorylase gene
 - (C) Polygalactouranase gene
 - (D) None of the above
- 49. Differential staining of bacteria on Grams staining is due to:
 - (A) Difference in cell wall layer components of Gram positive and Gram negative bacteria
 - (B) Difference in the cell structure of Gram positive and Gram negative bacteria
 - (C) Difference in mode of nutrition of Gram positive and Gram negative bacteria
 - (D) None of the above
- 50. Tetracyclines inhibit binding of amino acyl tRNAs to:
 - (A) 30 S ribosomal subunits
 - (B) 40 S ribosomal subunits
 - (C) 50 S ribosomal subunits
 - (D) 60 S ribosomal subunits

- 51. In turbidimetric measurement the growth is normally 56. If a coenzyme is required in an enzyme reaction, the expressed as:
 - (A) Cells per ml
 - (B) CFU/ml
 - (C) Optical density
 - (D) mg/ml
- 52. A culture broth tube was very turbid at the surface but clear throughout the rest of the tube indicating that the:
 - (A) Organism are aerobes
 - (B) Organism should be grown in an anaerobic chamber
 - (C) Organism cannot produce superoxide dismutase and/or catalase
 - (D) Organism cannot tolerate oxygen
- 53. When [s] is equal to Km, which of the following conditions exist?
 - (A) Half the enzyme molecules are bound to substrate
 - (B) The velocity of the reaction is equal to Vmax
 - (C) The velocity of the reaction is independent of substrate concentration
 - (D) Enzyme is completely saturated with substrate 59.
- 54. In competitive inhibition which of the following kinetic effect is true?
 - (A) Decreases both Km and Vmax
 - (B) Increases both Km and Vmax
 - (C) Decreases Km without affecting Vmax
 - (D) Increases Km without affecting Vmax
- 55. Trypsin has no action on:
 - (A) Hemoglobin
 - (B) Albumin
 - (C) Histone
 - (D) DNA

- former usually has the function of:
 - (A) Acting as an acceptor for one of the cleavage products of the substrate
 - (B) Enhancing the specificity of the apo enzyme
 - (C) Increasing the number of receptor sites of the apo enzyme
 - (D) Activating the substrate
- Ames assay is a rapid method for detection of:
 - (A) Oncoviruses
 - (B) Retroviruses
 - (C) Chemical carcinogens
 - (D) Typhoid
- The basic difference between a normal cell and cancer cell is:
 - (A) Cancer cells divide continuously but normal cells do not
 - (B) Normal cells are bigger than the cancer cells
 - (C) Normal cells are mortal but cancer cells are immortal
 - (D) Cancer cells divide but do not differentiate like Normal cells
- p53 gene is:
 - (A) A proto-oncogene
 - (B) An oncogene
 - (C) A tumor suppressor gene
 - (D) None of these
- 60. Which second messenger signals the release of Ca+2 from endoplasmic reticulum?
 - (A) IP3
 - (B) 1,2 diacyl glycerol
 - (C) cAMP
 - (D) cGMP

	2.5
	1
-	

Sr. No. 242

ENTRANCE TEST-2017

SCHOOL OF BIOLOGICAL SCIENCES BIOTECHNOLOGY

Paper—I

Question Booklet Series

_	
- 9	
	-
1	

Total Questions
Time Allowed

60

: 70 Minutes

Roll No.:

II No. :

Instructions for Candidates:

- 1. Write your Roll Number in the space provided at the top of this page of Question Booklet and fill up the necessary information in the spaces provided on the OMR Answer Sheet.
- 2. OMR Answer Sheet has an Original Copy and a Candidate's Copy glued beneath it at the top. While making entries in the Original Copy, candidate should ensure that the two copies are aligned properly so that the entries made in the Original Copy against each item are exactly copied in the Candidate's Copy.
- 3. All entries in the OMR Answer Sheet, including answers to questions, are to be recorded in the Original Copy only.
- 4. Choose the correct / most appropriate response for each question among the options A, B, C and D and darken the circle of the appropriate response completely. The incomplete darkened circle is not correctly read by the OMR Scanner and no complaint to this effect shall be entertained.
- 5. Use only blue/black ball point pen to darken the circle of correct/most appropriate response. In no case gel/ink pen or pencil should be used.
- 6. Do not darken more than one circle of options for any question. A question with more than one darkened response shall be considered wrong.
- 7. There will be 'Negative Marking' for wrong answers. Each wrong answer will lead to the deduction of 0.25 marks from the total score of the candidate.
- 8. Only those candidates who would obtain positive score in Entrance Test Examination shall be eligible for admission.
- 9. Do not make any stray mark on the OMR sheet.
- 10. Calculators and mobiles shall not be permitted inside the examination hall.
- 11. Rough work, if any, should be done on the blank sheets provided with the question booklet.
- 12. OMR Answer sheet must be handled carefully and it should not be folded or mutilated in which case it will not be evaluated.
- 13. Ensure that your OMR Answer Sheet has been signed by the Invigilator and the candidate himself/herself.
- 14. At the end of the examination, hand over the OMR Answer Sheet to the invigilator who will first tear off the original OMR sheet in presence of the Candidate and hand over the Candidate's Copy to the candidate.

DAJ-11134–B {{1}}} [Turn over

- 1. Ramachandran plot is obtained simply by plotting
 - (A) N-C_a bond & C_a-C bond
 - (B) C-N bond & C_a-C bond
 - (C) N-C_a bond & C-N bond
 - (D) N-C bond & C-O bond
- 2. The nucleic acid base with no oxygen in its molecule is
 - (A) Adenine
 - (B) Cytosine
 - (C) Guanine
 - (D) Thymine
- 3. Which of the following function is NOT associated with the smooth endoplasmic recticulum?
 - (A) Synthesis of steroid hormones
 - (B) Detoxification of toxic compounds in liver
 - (C) Regulation of calcium in skeletal & cardiac muscles
 - (D) None of the above
- 4. Which component is present in higher concentration in the inner leaflet of the plasma membrane?
 - (A) Sphingomyelin
 - (B) Phosphatidylcholine
 - (C) Phosphatidylserine
 - (D) Cholesterol
- 5. Which of the following is correct regarding the organization of hydrophobic tails of the phospholipids in the lipid bilayer of the plasma membranes of eukaryotic cells?
 - (A) They are present on the cytosolic surface of the plasma membrane
 - (B) They are present on the outer surface of the plasma membrane
 - (C) They are present towards the middle of lipid bilayer, both away from the outer surface and the inner surface
 - (D) Both (A) and (B)
- 6. The sodium-potassium pump functions by the following process:
 - (A) Simple diffusion
 - (B) Facilliated diffusion
 - (C) Active transport
 - (D) Passive transport

- 7. Which of the following metabolic pathways endproduct is used for the *de novo* synthesis of the nucleotides?
 - (A) Pentose phosphate pathway
 - (B) Gluconeogeneis
 - (C) Glycogeneis
 - (D) All the above
- 8. Which of the following is an anaplerotic reaction?
 - (A) Conversion of pyruvate to lactate by lactate dehydrogenase
 - (B) Conversion of pyruvate to acetyl-CoA by pyruvate dehydrogenase
 - (C) Conversion of pyruvate to oxaloacetate by pyruvate carboxylase
 - (D) All the above
- 9. In the majority of the animals, the beta oxidation of the fatty acids occurs in the:
 - (A) Nucleus
 - (B) Cytoplasm
 - (C) Golgi-bodies
 - (D) Mitochondria
- 10. Brown fat of an adipose tissue is "brown" due to the presence of:
 - (A) Anthocynins
 - (B) Cholesterol
 - (C) Cytochrome
 - (D) Lipoproteins
- 11. Cytochrome oxidase of the electron transport chain is inhibited by:
 - (A) Rotenone
 - (B) Carbon monoxide
 - (C) Antimycin A
 - (D) Oligomycin
- 2. Rubisco have an ability to bind with:
 - (A) O,
 - (B) CO₂
 - (C) Both O₂ & CO₂
 - (D) None of the above

- 13. Cyclic photophosphorylation produces:
 - (A) NADPH
 - (B) ATP
 - (C) Oxygen
 - (D) None of the above
- 14. Suppose a double-stranded DNA of a single bacterial cell was allowed to replicate in a media containing heavy isotope of nitrogen (N¹⁵) for two generations. If the DNA replicates by semi-conservative mode, what will be the ratio N¹⁴/N¹⁵ (Hybrid) and the N¹⁵/N¹⁵ (Heavy) DNA:
 - (A) 1:1
 - (B) 2:1
 - (C) 1:2
 - (D) 2:0
- 15. Translation of the eukaryotic mRNA occurs in the following direction:
 - (A) From the poly-A tail
 - (B) From the 3' to 5' end
 - (C) Both (A) and (B)
 - (D) From the 5' to 3' end
- 16. During induction of the lac operon, the inducer directly binds to:
 - (A) Promoter
 - (B) Operator
 - (C) Repressor
 - (D) Enhancer
- 17. Which of the following is the correct order of events that occur during the homologous recombination?
 - (A) Strand invasion-Holliday junction formation-branch migration-resolution.
 - (B) Resolution-branch migration-Holliday junction formation-strand invasion.
 - (C) Branch migration-resolution-strand invasion-Holliday junction formation.
 - (D) Holliday junction formation, resolution-branch migration-strand invasion.
- 18. A blunt-end cutter restriction enzyme leaves:
 - (A) 3' over hang
 - (B) 5' over hang
 - (C) Both (A) and (B)
 - (D) No over hangs

- 19. Which of the following vector has maximum capacity to take-in the foreign DNA?
 - (A) Plasmid
 - (B) Insertional lambda phage
 - (C) Cosmid
 - (D) pUC vector
- 20. Which of the following Polymerase chain reaction (PGR) program is sequentially followed each cycle for the amplification of the DNA?
 - (A) Denaturation-annealing-extension
 - (B) Annealing-denaturation-extension
 - (C) Extension-annealing-denaturation
 - (D) Denaturation-extension-annealing
- 21. Cosmid vectors possess *cos* sites, that are inherited from:
 - (A) Plasmid
 - (B) M13-phage
 - (C) Lambda-phage
 - (D) YACs
- 22. C3b of complement system is:
 - (A) Chemotactic
 - (B) An anaphylatoxin
 - (C) Opsonise bacteria
 - (D) That directly injuries bacteria
- 23. Which of the following is NOT true about an antigen?
 - (A) It contains epitopes
 - (B) It contains paratopes
 - (C) It reacts with immunoglobulins
 - (D) It elicits Immune response
- 24. Fc and Fab fragments of IgG are produced upon digestion with:
 - (A) Chymotrypsin
 - (B) Papain
 - (C) Trypsin
 - (D) Lysozymes
- 25. The class of heavy chain is determined by:
 - (A) Carbohydrate attached to the light chain
 - (B) Heavy chain type
 - (C) Antigen
 - (D) J-chain

- 26. Which of the following is NOT correct regarding the gel exclusion chromatography?
 - (A) It can be used for the desalting of protein solution
 - (B) The smaller molecular weight proteins are eluted first, followed by the larger molecular weight proteins
 - (C) It can be used for the determination of the molecular weight of the proteins
 - (D) It can be used for the separation of proteins
 - 27. Which of the following is NOT correct regarding the SDS-polyacrylamide gel electrophoresis (PAGE)?
 - (A) The proteins are separated on the basis of their size
 - (B) The proteins have same mass/charge ratio after SDS treatment
 - (C) Two Polyacrylamide gels, having different pore size are stacked one above the another
 - (D) All proteins move towards the cathode of the gel apparatus
 - 28. For the Southern blotting, the probe used is:
 - (A) RNA only
 - (B) DNA only
 - (C) DNA as well as RNA
 - (D) Primary antibodies
 - 29. In Lambert-Beer's law, the percent transmittance is the percentage of light:
 - (A) Reflected by the sample
 - (B) Emitted by the sample
 - (C) Not absorbed by the sample
 - (D) Absorbed by the sample
 - 30. F2 progeny of the monohybrid cross shows:
 - (A) Two phenotypes and two genotypes.
 - (B) Two phenotypes and three genotypes.
 - (C) Two genotypes and three phenotypes.
 - (D) One phenotype and two genotypes

- 31. A test cross distinguishes between:
 - (A) Two heterozygous plants
 - (B) Two homozygous plants
 - (C) Homozygous recessive and heterozygous-recessive.
 - (D) Homozygous dominant and heterozygous dominant
- 32. In mutation, if purine is replaced by pyrimidines & vice versa, it is called as:
 - (A) Transition
 - (B) Transversion
 - (C) Insertion
 - (D) Inversion
- 33. Deficiency of Hexosaminidase-A leads to:
 - (A) Phenylketonuria
 - (B) Cystic fibrosis
 - (C) Tay-sachs disease
 - (D) None of the above
- 34. Enzyme adenosine phosphate -lsopenteyl transferase (IPT) is involved in the biosynthesis of which hormone?
 - (A) Auxin
 - (B) Gibberellin
 - (C) Cytokinin
 - (D) ABA
- 35. Infection of Agrobacterium tumefaciens to the plant cell leads to:
 - (A) Increase in both the Auxin & Cytokinin concentration
 - (B) Decrease in both the Auxin & Cytokinin concentration
 - (C) Increase in the Auxin but decrease in the cytokinin concentration
 - (D) Increase in the cytokinin but decrease in the Auxin concentration
- 36. Organ of corti is concerned with:
 - (A) Touch
 - (B) Taste
 - (C) Vision
 - (D) Hearing

- 37. Nissl granules of the nerve cells are made up of:(A) Dynein proteins
 - (B) Rough endoplasmic recticulum with rosettes of free ribosomes
 - (C) DNA-RNA hybrid
 - (D) Lipid granules
- 38. Ability of a bacterial cell to take up DNA fragment from the surroundings is called as:
 - (A) Fitness
 - (B) Fecundity
 - (C) Competency
 - (D) Reproducibility
- 39. If the F factor is attached to bacterial genome, the donor is called as:
 - (A) F-strain
 - (B) Hfr strain
 - (C) F-prime
 - (D) F-super strain
- 40. Which of the following amino acid is found both in D and L forms in the peptidoglycan?
 - (A) Lysine
 - (B) Glutamine
 - (C) Glutamic acid
 - (D) Alanine
- 41. The repressor protein of lambda phage bind to the bacterial DNA acts as a:
 - (A) Monomer
 - (B) Dimer
 - (C) Trimer
 - (D) Tetramer
- 42. Which of the following "term" is used to denote the enzymes that differ in amino acid sequences, but catalyze the same reaction?
 - (A) Apo-enzymes
 - (B) Holo-enzymes
 - (C) Co-enzymes
 - (D) Isoenzymes

- 43. Enzyme class that use ATP or a similar co-factor for the formation of C-C, C-S, C-O and C-N bonds is called:
 - (A) Ligases
 - (B) Oxidoreductases
 - (C) Isomerases
 - (D) Lyases
- 44. Binding of an inhibitor, both to the enzyme and enzyme substrate complex results in:
 - (A) Competitive inhibition
 - (B) Uncompetitive inhibition
 - (C) Mixed inhibition
 - (D) None of the above
- 45. Two enzymes "X" and "Y", having K_m values of 9.5×10⁻⁵M and 1.2×10⁻²M respectively. Which of the above enzyme will achieve maximum catalytic efficiency at low substrate concentration?
 - (A) X
 - (B) Y
 - (C) Both (A) and (B)
 - (D) There is no relation between K_m and catalytic efficiency
- 46. Which of the following is NOT correct regarding the molecular basis of the cancer?
 - (A) Activation of the proto-oncogene to oncogene leads to cancer
 - (B) Inactivation of the proto-oncogene leads to cancer
 - (C) Inactivation of the tumor suppressor gene leads to cancer
 - (D) Over-expression of the oncogene, due to gene amplification leads to cancer
- 47. Which of the cell-cycle component shows significant differential expression during mammalian cell cycle?
 - (A) Innexins
 - (B) Cyclins
 - (C) Pannexins
 - (D) Connexins

- 48. Which of the following is NOT considered secondary messenger?
 - (A) cGMP
 - (B) Ca2+

2

- (C) Diacylgycerol
- (D) Gal4p
- 49. The adenylatecyclase performs the following function:
 - (A) It converts ATP to 3',5'-cyclic AMP
 - (B) It converts ATP to ADP and then to AMP
 - (C) It converts ADP to AMP
 - (D) It converts AMP to ADP.
- 50. In the glucose-alanine cycle, the alanine in the skeletal muscle is formed from:
 - (A) Oxaloacetate
 - (B) Pyruvate
 - (C) Alpha-ketoglutrate
 - (D) Glycine
- 51. 100ml of 1 molar glucose solution was taken and dissolved in 900ml of pure water. The molarity of glucose in the new solution is:
 - (A) 100 mM
 - (B) 50 mM
 - (C) 200 mM
 - (D) 150 mM
- 52. What is the median and mode for the following set of numbers: 9, 4, 45, 4,18,13, 7, 4?
 - (A) 4 median, 18 mode
 - (B) 18 median, 4 mode
 - (C) 8 median, 4 mode
 - (D) 18 median, 18 mode
- 53. What will be the molarity of [H]⁺ and [OH]⁻ ions in an aqueous solution having pH of 2?
 - (A) 10^{-2} M [H]⁺ and 10^{-12} M [OH]⁻
 - (B) 10⁻¹² M [H]⁺ and 10⁻² M [OH]⁻
 - (C) 10⁻⁴ M [H]⁺ and 10⁻¹⁰ M [OH]⁻
 - (D) 10⁻¹ M [H]⁺ and 10⁻¹³ M [OH]⁻
- 54. Which of the following is the free search engine database of references and abstracts on life sciences and biomedical topics?
 - (A) Ensemble
 - (B) Endnote
 - (C) ORE
 - (D) Pubmed

- 55. The indicator of reaction spontaneity is determined by the Gibb's free energy reaction: $\Delta G = \Delta H T\Delta S$. If a reaction has negative ΔH and positive ΔS , the reaction is:
 - (A) Enthalpicaly favored, but entropicaly opposed
 - (B) Enthalpicaly opposed, but entropicaly favored
 - (C) Enthalpicaly as well as entropicaly favored
 - (D) Enthalpicaly as well as entropicaly opposed
- 56. Which of the following functional group(s) can form hydrogen bond with water?
 - (A) Keto-group
 - (B) Amino-group
 - (C) Both (A) and (B)
 - (D) None of the above
- 57. Which of the following is an amphiphilic molecule?
 - (A) Fatty acid
 - (B) Glucose
 - (C) Glycine
 - (D) Both (B) and (C)
- 58. In the following reaction: $HA + H_2O \rightarrow H_3O^+ + A^-$, the H_2O acts as a:
 - (A) Bronsted acid
 - (B) Bronsted base
 - (C) Both (A) and (B)
 - (D) Neither acid nor base
- 59. Benedict's test was done to a carbohydrate solution, the result was negative, the carbohydrate present is:
 - (A) Glucose
 - (B) Fructose
 - (C) Lactose
 - (D) Sucrose
- 60. n-Octadecanoic acid is commonly known as:
 - (A) Arachidonic acid
 - (B) Palmitic acid
 - (C) Stearic acid
 - (D) Laurie acid

		0	0	U	ı
Sr. N	^	0	U	U	
31. 11	U				

ENTRANCE TEST-2016

FACULTY OF BIOLOGICAL SCIENCES M.Sc. BIOTECHNOLOGY

Paper-I

Total Questions

Time Allowed

60

70 Minutes

Question Booklet Series

A

Roll No. :

Instructions for Candidates:

- 1. Write your Roll Number in the space provided at the top of this page of Question Booklet and fill up the necessary information in the spaces provided on the OMR Answer Sheet.
- 2. OMR Answer Sheet has an Original Copy and a Candidate's Copy glued beneath it at the top. While making entries in the Original Copy, candidate should ensure that the two copies are aligned properly so that the entries made in the Original Copy against each item are exactly copied in the Candidate's Copy.
- 3. All entries in the OMR Answer Sheet, including answers to questions, are to be recorded in the Original Copy only.
- 4. Choose the correct / most appropriate response for each question among the options A, B, C and D and darken the circle of the appropriate response completely. The incomplete darkened circle is not correctly read by the OMR Scanner and no complaint to this effect shall be entertained.
- 5. Use only blue/black ball point pen to darken the circle of correct/most appropriate response. In no case gel/ink pen or pencil should be used.
- 6. Do not darken more than one circle of options for any question. A question with more than one darkened response shall be considered wrong.
- 7. There will be 'Negative Marking' for wrong answers. Each wrong answer will lead to the deduction of 0.25 marks from the total score of the candidate.
- 8. Only those candidates who would obtain positive score in Entrance Test Examination shall be eligible for admission.
- 9. Do not make any stray mark on the OMR sheet.
- 10. Calculators and mobiles shall not be permitted inside the examination hall.
- 11. Rough work, if any, should be done on the blank sheets provided with the question booklet.
- 12. OMR Answer sheet must be handled carefully and it should not be folded or mutilated in which case it will not be evaluated.
- 13. Ensure that your OMR Answer Sheet has been signed by the Invigilator and the candidate himself/herself.
- 14. At the end of the examination, hand over the OMR Answer Sheet to the invigilator who will first tear off the original OMR sheet in presence of the Candidate and hand over the Candidate's Copy to the candidate.

SFAI

Turn over

CWG-33105-A

1.	Which o	of the following is true?					
	(A) Standard deviation is variance divided by $N-1$						
	(B) Standard deviation is the 'average' variance						
	(C)	Standard deviation is the squ		Water wines and the same of th			
	(D)	Standard deviation is the squ					
2.	45.0 g o	f Ca(NO ₃) ₂ was used to prepar	eal3Ms	olution. What is the apr	proximate		
		of the solution?		oration. What is the app	AA r weekelee		
	(A)	0.21 ml	(B)	210 ml			
	(C)	360 ml	(D)	4.7 ml			
3.	How ma	iny moles are present in 1.20 ×	< 10 ²⁵ silve				
blem	(A)	0.9 I the mode had been a very 2	(B)				
	(C)	1.9 and adjusting visu	tredt wermen	19.9	OME Answer sheet has a cottles in the Original O		
4.	100 ml o	f1.0 M solution of a compound	with 2 ioni	izable groups (pV e's = 6	2 and 0.5)		
7.							
		of 6.8. If 60 ml of 1.0 M HCl ar		ROOGEST SIR PROTEINS IN	mange to .		
	(A)	9.13	(B)	8.90 9.32			
	(C)	eorgophas sampophas sa	(D)	if next short of real throat			
5.	For every will be:	y 10 degree Celsius increase in	temperatu	re, the rate of a chemica	l reaction		
	(A)	Half	(B)	Double			
	Henne harr	Four times	(D)	10-fold			
	(C)	rout times	(D)	10-10ld			
6.	The seco	ond law of thermodynamics ess	entially say	ys: of niado bloow on			
	(A)	Heat is energy					
	(B)	Motion energy converts to he	eat energy	nack on the OMR sheet	Do not make any stray in		
	(C)	At the atomic level, motion is	continuou	s battimed of ton thate			
	(D)	Entropy increases					
7.		nts with branched hydrocarbor					
	(A)	Effective	~	Synthetic			
	(C)	Sulfonates	(D)	Biodegradable			
		d over the Candidate's Copy to		presence of the Candida	4. At the end of the examinoring original OMR sheet in p		

	a change	in conditions, the system wil	l:	MESS TOWNS I DOISD!		
	(A)	React in a way that neutralis	ses the char	nge incurred		
	(B)	Adjust to re-establish equilities the imposed change	brium in su	ach a way as to partial	lly counteract	
	(C)	Not respond in any way			SEARCH TO LEAST	
	(D)	React in a way that quickly	eturns all re	eactant and product co	oncentrations	
		to their original values		Ceilular		
9.	The give	n structure best describes wh	ich of the fo	ollowing?		
	H_3N	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H O - C - C -	H H O - N - C - C - O		
		Ĥ ĆH₂OH	CH ₃			
				COO-		
	(A)	An amino acid	(B)	A tripeptide		
	(C)	A tetrapeptide	(D)	Alipid		
					the following metabo	
10.	Vitamins	often function as:				
	(A)	Apoenzymes	(B)	Holoenzymes		
	(C)	Cofactors	(D)	Coenzymes		
11.	Starch co	onsists of :		4 (0)		
	(A)	Unbranched amylose and b	ranched am	nylopection		
		Branched amylose and bran				
	(C)	Unbranched amylose and u				
	(D)	All of these				
				$\alpha(1-6)$ -plucosidas		
12.	What ho	lds sugar monomer units tog	ether in con	nplex carbohydrates	Muscle contains no ?	
	(A)	Peptide bonds	(B)	Disulfide linkages		

13. Which of the following contains digestive enzymes and produces oxygen radicals?

(A) Mitochondria

(B) Lysosome

(C) Golgi apparatus

Ionic bonds

(D) Smooth endoplasmic reticulum

(D) Ether linkages

(C)

14.	The prot	on motive force is considered a st	ored fo	orm of energy	because:		
	(A)	It is a chemical gradient			tions, the system will		
	(B)	It is an electrical gradient			n a way that neutralis		
	(C)	It can be used to perform chemic	cal wo	rk	to re-establish equilif		
	(D)	All of these			osed change		
					spood in any way		
15.	Which o	f the following correctly matches a	n organ	nelle with its f	unction?		
	(A)	Nucleus	Cell	ular respiration	original values 1		
	(B)	Ribosome	Synt	thesis of lipids			
	(C)	Lysosome	Cell	movement	ure best describes whi		
	(D)	Central vacuole	Stor	age	нонно		
					K-3-5-415		
16.	The ener	gy required to destabilize existing c	hemic	eal bonds is cal	edenergy.		
	(A)	Activation	(B)	Destabilization	on		
	(C)	Kinetic	(D)	Free	bionomia		
					ahilman		
17.	Which o	f the following metabolic products	produ	iced by erythro	cytes under normal		
	condition	ns and by muscle cells during intens	se exer	cise is recycle	through liver in the		
	Cori cyc	le?		1 (组)	enervs:		
	(A)	Oxaloacetate	(B)	Alanine	2101		
	(C)	Glycerol	(D)	Lactate			
					h.		
18.	Muscle	glycogen cannot release glucose in	nto the	blood for wh	ich of the following		
	reasons				and bus sections bed		
	(A)	Muscle plasma membrane conta	in no g	glucose transpo	orters		
	(B)	Muscle contains no glucose-6-pl	nospha	atase	these		
	(C)	Muscle contains no $\alpha (1-6)$ –gl	ucosid	lase			
	(D)	Muscle contains no phosphogluc	omuta	ise month to the	ar monomer units lög		
		de linkages	MagC	I (8)	tie Bonds		
19.	Whicho	f the following statements is true abo					
	(A)	The enzymes responsible have a			17.0		
	(B)	Colipase is required for efficient			llowing contains digo	filte fo	
	(C)	Lingual lipase cleaves a fatty acid					
	(D)	Triglyceride droplets are dispers	ed by	the action of b	ile salts		

	(A)	Reduces galactitol to galactose	(B)	Reduces lactose to sorbitol	
	(C)	Converts sorbitol to fructose	(D)	Reduces glucose to sorbitol	
				Figure on A terms	
21.	The mol	ecule that functions as the reducing	gagent	in a redox or oxidation-reduction	
	reaction	A Miller of a common of the		A polypeptide is formed in response to the	
	(A)	Gains electrons and gains potenti	al ener	gy vd.batato b as barmot at abitigacylog A.	
	(B)	Loses electrons and loses potenti	al ener		
	(C)	Gains electrons and loses potenti	al ener		
	(D)	Loses electrons and gains potenti	al ener		
				The core includes the sigma factor	
22.	Which o	f the following statements describe	s NAI	D+? valvites active? Mg Mg requires Mg.	
	(A)	NAD+ is reduced to NADH during	ng glyc	colysis uvidas zil 101 Cn.X zeniupen 11	
	(B)	NAD ⁺ has more chemical energy	than I	NADH	
	(C)	NAD ⁺ is oxidized by the action o			
	(D)	NAD+ can donate electrons for us	se in ox	xidative phosphorylation	
				It is required for normal cell function	
23.	Which o	f the following inhibitors inhibit con	mplex-	-IV of electron transport chain?	
	(A)	Antimycin	(B)	Rotenone Small Lample and Head H	
	(C)	Amytal	(D)	Carbon monoxide	
				betic unit of the polymorase chain martion i	
24.	Which o	rganism is not correctly matched to		nergy source?	
	(A)	Chemoautotroph : Irc		Amplicon (D) I	
	(B)		ght		
	(C)		0,	on vectors differ from eleming vectors in har	
	(D)	Anoxygenic autotroph : Li	ght	An origin of replication (B)	
25	T 1	l elements	Onino S	Unique restriction sites	
25.		ryotes, the lagging strand primers		DNA ligase	
	(A)	3' to 5' exonuclease DNA polymerase I	(B) (D)	DNA polymerase III	
	(C)	DIVA polymerase i	(D)	polymerase in	
26.	In meth	yl directed mismatch repair in E.c	oli, th	e daughter strand containing the	
20.		thed base is nicked by:		Playind Bolivar and Rodys uses	
	(A)	MutH endonuclease	(B)	UvrABC endonuclease	
	(C)	AP endonuclease	(D)	3' to 5' exonuclease	
	(5)	. I. VIIIIOIIIII	(-)		
CW	/G-33105	-A		5 [Turn o	ver

20. The reaction catalysed by aldol reductase:

21.	in the pi	rocess of translation:							
	(A)	A strand of mRNA is formed w	es complementary						
		to those of DNA							
	(B)	Nucleotide sequences of tRNA	are est	ablished					
	(C)	avoid the first term of the rest of the second seco							
	(D)	A polypeptide is formed as dicta							
				THE SERVE SOURCES					
28.	Which of the following statements about E.coli RNA polymerase is false?								
	(A) The holograms includes the giams factor								
	(B)	The core includes the sigma factor The core includes the sigma factor							
	(C)	It requires Mg ²⁺ for its activity		escribes NAD*					
	(D)	It requires Zn ²⁺ for its activity		(lawing glycol)					
				energy than NA					
29.	Which o	of the following characteristics is n	ot true	of a plasmid?					
	(A)								
	(B)								
	(C)	It is found in bacteria		/I-xsiqmos tield					
	(D)	It can be transferred from cell to		(B) B	Animycin .	(A)			
	,	phixonon	i nódra!) (I)					
30.	The synt	hetic unit of the polymerase chain	reactio	on is called:					
	(A)	Annealer	(B)	Ligase					
	(C)	Amplicon	(D)	Primer					
				ndgi.l ;	Photoiscieroppi				
31.	Expressi	on vectors differ from cloning vec	tors in l	naving:					
	(A)	An origin of replication	(B)	Suitable marke	r genes				
	(C)	Unique restriction sites	(D)	Control elemen					
		DARK		(8)					
32.	In pBR 3	322, pBR stands for:		(0)					
	(A)	Plasmid bacterial recombination							
	(B)	Plasmid bacterial replication		utin E.coli, the					
	(C)	Plasmid Bolivar and Rodriguez							
	(D)	Plasmid Baltimore and Rodrigue	z	(8)					

33.	Which of the following molecules or structures is not associated with innate						
	immuni						
	(A)	Phagocytes	(B)	Lysozyme			
	(C)	Antibodies	(D)	Skin			
34.	The prin	mary role of Th-2 cells is to:		ionsly uniquown virus.			
	(A)	Function as T-killer cells	(B)	Activate NK cells			
	(C)	Activate macrophages	(D)	Activate B-cells	this information, v		
	<i>-</i>			(D) 7			
35.		lls do not:					
	(A)	Express CD4	(B)	Produce IFN-gamma			
	(C)	Bind soluble antigens	(D)	Activate macrophages	usband has the dis		
36.		cess whereby neutrophils a atory site is called:					
	(A)	Diapedesis	(B)	Chemotaxis			
	(C)	Margination	(D)	Phagocytosis			
37.	A patien	nt has been diagnosed with a	betalipopro	teinemia. Such a disord	der can be		
	determin	ned by which of the followin	g techniques	using samples obtained	d from the		
	blood?			eeles, evely child at yo			
	(A)	Western blot	(B)	Northern blot			
	(C)	Southern blot	(D)	PCR analysis			
				der dystropaty			
38.	Which I	NA fragment will be close t	o the top (ne	gative pole) of an electr	ophoretic		
	gel?			garto ad no aquon ho			
	(A)	450 bp	(B)	3,560 bp			
	(C)	5 kb	(D)	1,500 bp			
				(D)			
39.	Which o	f the following techniques doe	es not involve	e electrophoresis for the s	separation		
	of biomo	olecules?		nost important to your r			
	(A)	Dot blotting	(B)	Southern blotting			
	(C)	Northern blotting	(D)	Western blotting			
				(G)			

40.	In which of the following separation methods does protein separation take place on								
	the basis of their net charge?								
	(A)	Affinity chromatography	(B)	Ion-exchange					
	(C)	Dialysis	(D)	Gel-filtration					
		\							
41.	A researcher isolated a previously unknown virus. Analysis of its genome revealed								
	that it is composed of a double stranded DNA molecule containing 14% T (thymine).								
	Based on this information, what would you predict the %C (cytosine) to be?								
	(A)	14%	(B)	28%					
	(C)	36%	(D)	72%					
				do					
42.	Certain t	ypes of muscular dystrophy are sex	c-link	ed. If wife is carrier for the disease,					
	and the l	nusband has the disease, what is the	ne pro	bability their children will get the					
	disease?) -							
	(A)	50% for boys and 50% for girls	(B)	50% for boys and 0% for girls		The proc			
	(C)	100% for boys and 50% for girls	(D)	100% for boys and 0% for girls					
		Otaxis		edesis (B)					
43.	Which of these statements would indicate that the trait in question has a genetic								
	component?								
	(A) Several adopted individuals living in the same family all have exceptionally strong fingernails								
	(B) In the last two weeks, every child at your daughter's daycare has had a								
	(13)	cold							
	(C)	(C) Your brother, two cousins, and a great uncle all have been diagnosed with							
	(-)	Duchenne muscular dystrophy							
	(D) All of these indicate a genetic component								
		pole) of an electrophoretic	ovita	ragment will be close to the up (neg					
44.	What are	e the possible blood groups for the	offsi	orings from a type A mother and a					
	type AB		3,560	700					
	(A)	A, B, AB and O	(B)	A, B and AB					
	(C)	A and AB	(D)	Aonly					
				allowing techniques does not involve					
45.	Which part of the brain is most important to your recall of information for success on								
	this test		South	hlotting (B)					
	(A)	Cerebrum	(B)	Cerebellum					
	(C)	Medulla	(D)	Thalamus					

46	. The co	ntrol of our natural biorhythm	s and daily	cycle is by:				
	(A)		(B)	THE RESIDENCE OF				
	(C)	Thyroxin	(D)					
			or Katal	O (8)				
47.	To prod	duce plants that are homozygo	us for all tr	aits, the best of	choice is:			
1	(A)	Cell suspension culture	(B)					
	(C)	Anther/pollen culture	(D)	Plant organ	culture visitation in state and			
48.	The hos		noitone; b	an uncatalyzo				
то.	(A)	mone responsible for phototro			ving tips of plants is:			
	(A)	Ethylene	(B)	- Carl Annual Control	Bound very weakly to the co			
	(C)	Gibberellin	(D)	Abscisic aci	d month betslugog-yldgid A			
49.	Antimic	crobial resistance is facilitated b	v which of	the following				
	(A)	The inappropriate use of me		and rollo (thing	the following amino acid st			
	(B)							
	(C)	Using poor infection preven		ntrol methods				
	(D)	All of the above	ysing.	I = (4)				
50.	(A) (B) (C) (D)	All require presence of an ou In all the 3 processes, DNA They all transfer extremely land None of the above	itside facto is transferr	or to facilitate g ed as a single	gene transfer stranded molecule	Genes wi (A) (C) (C)		
51.	Which	f the following is absent in the	call wall at	(B)	Prophase			
	(A)	Lipoproteins						
	(C)	Teichoic acid	(B) (D)	Lipopolysaco Peptidoglyca	n			
52.	(A)	riment began with 4 cells and eells go through?	ended with (B)	128 cells. How	er eremodition) Sutmolfot aut J			
	(C)	6 gainnol ybod to mag	(D)	5				
53.	Succinate addition (A) (C)	e dehydrogenase converts Su of Malonate, the inhibition cau Allosteric inhibition Non-competitive inhibition	eccinate to	Fumarate, it on ssical example Competitive in the competition of the c	ean be inhibited by e of: nhibition			
	(0)	2 competitive numbricon	(D)	Uncompetitiv	е инпошоп			

34.		unt of enzyme catalyzing the c	conversion	one mole of substrat	te to product	
	in one se	cond is:		4 (O)		
	(A)	One International Unit	(B)	One Katal		
	(C)	Specific activity	(D)	Catalytic power	ce plants that are hor	
55.	The trans	sition state of a catalyzed reac				
	(A)	Lower in energy than that of				
	(B)	Lower in energy than the rea	action subst	rate and of coloring		
	(C)	Bound very weakly to the ca		(日)		
	(D)	A highly-populated intermed	diate on the	reaction pathway		
56.	Which o	f the following amino acid si	de chains is	most likely to act as l	ooth a weak	
		a nucleophile in enzyme-cata		The second secon		
	(A)	Glutamine	(B)			
	(C)	Serine	(D)	Lysine	Using poor infection	
57.	Genes w	hich promote cancer are calle	ed:	aguinos bas noiteam		
	(A)	Tumor suppressors	(B)	Oncogenes		
	(C)	Growth factors	(D)	Malignancy enhance	ers Managong English lish	
					They all transfer ex	
58.	During v	which stage of mitosis does cyt	tokinesis us	ually occur in animals	None of the above	
	(A)	Prophase	(B)	Metaphase		
	(C)	Anaphase	(D)	Telophase		
					adistorqoqi.1	
59.	Which o cells?	f the following compounds is s	ynthesized b	by macrophages for kill	ing bacterial	
	(A)	Nitric oxide	(B)	Glutathione	cincat began with 4	
	(C)	Melatonin	(D)	Melanin		
	(0)	Treate and the second	(-).	(6)	64	
60.	Migratio	on of cancerous cells from th	e site of ori	gin to other part of bo	ody forming	(O) .
				onverts Succinate to		
	(A)			Metastasis		
	(C)	Proliferation	(D)	Differentiation		
				(Cl) mobileliefe		

	Following is the mean, median and mode respectively of the data; 13, 18, 13, 14,						
	13, 16, 14, 21, 13:						
	(A)	15, 14, 13		13, 17, 18			
		15, 13, 14	(D)	13, 18, 17			
2.	In bio-inf	Formatics, the tool "BLAS	T" is used for:	:			
	(A)	Translating mRNA sequ	ence to Protein	sequence			
	(B)	Finding restriction endor	nuclease sites ii	n a given DNA sequen	ce		
	(C)	Finding open reading fra	ime of a given l	DNA sequence			
	(D)	The sequences alignmen	nt of a given nuc	cleotide sequence			
3.	The volu	ıme (in ml) of 20 mM Na	Cl solution rec	quired to prepare 100 t	nl of 5 mM		
٥.	NaCl sol						
	(A)	4 ml	(B)	50 ml			
	(C)	_	(D)	10 ml			
4.	Molarity	of 15% glucose solution	in water is:				
4.		1.2 M	(B)	0.88 M			
		1.5 M	(D)	0.5 M			
_	TT-4 h	ytic cleavage of carbon-h	ovdrogen bond	(-C-H) results in the f	formation of		
5.		cation and:	.j 4. - 2				
			(B)) Proton			
	(A) (C)	· · · · · · · · · · · · · · · · · ·	(D)	, , , , , , , , , , , , , , , , , , ,			
_	TCAL A	H is positive and ΔS is ne	gative the read	ction is :			
6.			bw $T = \Delta H/\Delta S$				
	(A)		eratures				
	(B)	1 1.	ve T = AH/AS				
	(C)						
	(D)	Exometime at an temp	Ciara ss.		•		
7.	At pH	< 2, the glycine will be mo	ostly:	•			
	(A)		(E	•			
	(C)) Negatively charged	(C	Positively charged			

	(A)	Hydrophobic molecules	(B)	Hydroph	ilic molecules
	(C)	Amphiphilic molecules	(D)	None of	the above
	(-)	• •			
9.	In Rama	chandran diagram, the torsional	degree	e of freed	om in a peptide unit is
,		d between the angles:			
		C-N and C-C	(B)	C = N a	nd C = O
		$C_{\beta} - C$ and $C - N$	(D)	$C_{\beta} - C$	and $C = O$
	(-)	β			
10.	Which o	f the following is directly required	for DN	IA synthe	sis?
10.	(A)	Linoelic acid	(B)	Folic ac	
	(C)	Oelic acid	(D)	None of	fthe above
	, ,				
11.	In a dou	ble-standard DNA having Watsor	-Cric	k base pai	ring, if guanine is 10%,
• • • • • • • • • • • • • • • • • • • •		ll be the percentage of adenine?			
	(A)	90%	(B)	40%	
	(C)		(D)	10%	
	(-)				
12.	In sucre	ose, the glycosidic bond is formed	betwee	en:	
	(A)				
	(B)	1 Cld - f franctor			
	(C)	C2 of glucose and C4 of fructor	se		
	(D)	1 Cl offmata			
13	Which	of the following is NOT the comp	onent	of a typic	al mammalian biological
	membi	rane ?			
	(A)	Saturated phospholipids		(B)	Cholesterol
	(C)	Unsaturated phospholipids		(D)	None of the above

Micelles in aqueous solution are formed by:

8.

	14. Which of the following is NOT corre	ect regarding Na + K - numa 2
	(A) It moves the Na + and K + ac gradients	ross the membrane against their concentration
1.	(B) It pumps Na inside cell an	d K+outside cell
	(C) It uses ATP	-12 Odiside Cell
	(D) It helps in maintaining the re-	sting potential of the cells
2.	15. Which of the following is NOT true about	Out mitachandrie 2
	(A) Inner membrane has large nu	mber of infoldings
	(B) Transcription of genes does n	10t Occur in mitochandria
	(C) F_0F_1 particles are meant for A	TP synthesis
	(D) It plays role during apoptosis	-y
3.		
	16. Which of the following is TRUE about e	uchromatin?
	(A) It is densely packed chromating	1
	(B) It is often part of less-active tra	
4	(C) It is often part of more-active tr	ranscriptional unit of chromatin
	(D) Both (A) and (B)	i and a chromatm
	17. Conversion of glycogen to glucose–1 pho	Osphate is cultical
•	(A) Gluconeogenesis	(B) Glycolysis
	(C) Glycogenesis	(D) Glycogenolysis
	18. If NAD+/NADH ratio in annual 1. T.T.	y Berrory 513
	The TCA	cycle will be:
	(A) Inhibited	(B) Activated
	(C) Neither activated, nor inhibited	(D) First inhibited and then activated
	19. In humans, the metabolic degradation of m	Oct of the control of
	the formation of;	ost of the standard amino acids results in
	(A) TCA cycle intermediates	(B) Uric acid
	(C) Both (A) and (B)	. ,
		(D) None of the above

20.	Which of	f the following is correct regarding	pento	se phosphate pathway (PPP) ?
	(A)	It is active in actively growing cell		
	(B)	It is active in adipose tissue		
	(C)	It is active in cells with oxidative s	stress	
	(D)	All the above		
21.	During o	xidation-reduction reactions, the re	ducin	g agent is:
	(A)	Oxidized and gains electrons		
	(B)	Oxidized and loses electrons		
	(C)	Reduced and gains electrons		
	(D)	Reduced and loses electrons		
22.		of the following is the initial	elect	ron donor for the non-cyclic
	photopho	osphorylation?		
	(A)	H_2O	. ,	ATP
	(C)	NADPH ₂	(D)	None of above
23.	Which	f the following is NOT correct rega	rding o	chemiosmotic theory of oxidative
23.		rylation?		·
		An electrochemical gradient is t	forme	d across the inner mitochondrial
	(11)	membrane		
	(B)		al grad	lient, the protons move from inter-
	(D)	membrane space to mitochondria		
	(C)			lexes are present in the inner
	(0)	mitochondrial membrane.	•	-
	(D)		thase	occurs by forming bond between
	(2)	inorganic phosphate and ADP.		•
24.	In most	of the biological reactions, the NA	D+ get	s reduced by accepting:
	(A)	Two electrons and a proton		
	(B)	One electron and a hydrogen ato	m	
	(C)	One hydride ion		
	(D)	Both (B) and (C)		

25.	(A) (B) (C) (D)	-10 position relative to translational start site -35 position relative to transcriptional start site				
26.	DNA rep	olication, catalyzed by DNA poly	ymerase	e occurs in:		
	(A)	5' -3' direction				
	(B)	3' -5' direction				
	(C)	In one stand 5'-3' and in other	3`-5` d	irection		
	(D)	5'-5' direction				
27.	Which o	f the following is m ⁷ G-cap bindi	ng prot	ein of eukaryotic mRNA ?		
	(A)	eIF3	(B)	eIF4G		
	(C)	eIF4A	(D)	eIF4E		
28.	Chi-sequ	nence are mostly involved in:				
	(A)	Transcription				
	(B)	Recombination				
	(C)	Replication origin recognition				
	(D)	End replication of eukaryotic D	NA	,		
29.	Type-II r	estriction enzymes are :				
	(A)	Endonucleases that recognize phosphodiester bond within the		cific DNA sequence and break		
	(B)	Exonucleases that recognize phosphodiester bond outside it	s speci	fic DNA sequences and break		
	(C)	Enzymes that recognize specified bond within the sequence	ic DNA	sequences and break glycosidic		
	(D)	Both (B) and (C)				
30.	Beta-lact	amase selectable marker gene us	ed in ve	ectors gives resistance against:		
	(A)	Kanamycin	(B)	Tetracycline		
	(C)	Ampicillin	(D)	Chloramphenicol		

1.

2.

3.

31.	In DNA recombinant technology, DNA ligases are used to:									
	(A)	Join two DNA strands by forming the phosphodiester bond								
	(B)	Join two DNA strands by forming the Hydrogen bond								
	(C)	Join two DNA strands by forming the glycosidic bond								
	(D)	Both (B) and (C)								
32.	Whicho	f the following is NOT requir	ed during po	olymerase chain reaction?						
	(A)	DNA polymerase	(B)	Primase						
	(C)	dNTPs	(D)	Template DNA						
33.	Which o	f the following is the central t	molecule in	complement pathway of immune						
	system?									
	(A)	C1	(B)	C2						
	(C)	C3	(D)	C5						
34.	A typical	monomeric antibody has:								
	(A)	Two Fab regions and two Fc regions								
	(B)	3) Two Fab regions and One Fc region								
	(C)	One Fab region and One Fc region								
	(D)	One Fab region and two Fo	regions							
35.	Clonal se	election occurs when antigen	is encounter	red by :						
	(A)	Neutrophil	(B)	Basophil						
	(C)	Eosinophil	(D)	None of the above						
36.	Individu	als with AB-blood group pos	sess:							
	(A)	A and B antigen and no anti	i-A and B ar	ntibodies						
	(B)	A antigen and anti-B antibo	odies							
	(C)) No antigen and anti-A and B antibodies								
٠	(D)	B antigen and antie -A antib	odieș							
37.	In gel-ex	clusion chromatography, the	protein are	mainly separated on the basis of:						
	(A)	Charge	(B)	Adsorption to matrix						
	(C)	Affinity with ligand	(D)	None of above						

	Which of the following is true regarding the electrophoretic mobility of ion during gel						
	electrophoresis?						
	` '	(A) It is directly proportional to charge of ions(B) It is inversely proportional to frictional coefficient of the medium					
	(B)	It is inversely proportional t					
	(C)		O square of c	······································			
	(D)	Both (A) and (B)					
39.	During is	sopycnic density centrifugation	on, when the	density of particle becomes equ			
		medium, the particle will:					
	(A)	Move towards the bottom	of tube				
	(B)						
	(C)						
	. (D)	First move upwards and the	en downward	ds			
40.	For the	detection of specific mRNA	by Northern	Blot, the probe used is:			
	(A) Sense DNA strand of that particular gene						
	(B) Template DNA strand of that particular gene						
	(C)	RNA sequence of same ml	RNA				
	(D)	All the above					
41.	. The mu	tations that result in a protein	n, which "poi	sons" or otherwise counteracts			
		pe protein are known as:					
	(A)		(B)	Null			
	(C)	Dominant negative	(D)	Loss of function			
42	. Which	of the following is NOT the g	genetic disord	ler?			
42		of the following is NOT the g Phenylketonuria		ler? Cystic Fibrosis			
42	Which (A) (C)	Phenylketonuria	(B)				
	(A) (C)	Phenylketonuria Hemophilia	(B) (D)	Cystic Fibrosis None of the above			
42	(A) (C)	Phenylketonuria Hemophilia mber of types of gametes pro-	(B) (D)	Cystic Fibrosis None of the above			

1.

2.

3.

4

	When an offspring of F1 generation is crossed with one of its parents, it is called as:								
	(A)	F1 cross	(B)	F0 cross					
	(C)	Back cross	(D)	Both (A) and (B)					
45.	Which o	of the following is a glial cell (s) of the cen	tral nervous system ?					
	(A)	Microglia	(B)	Oligodendrocytes					
	(C)	Astrocytes	(D)	All of the above					
1 6.	Which o	f the following is "Fight or Fli	ght" hormoi	ne?					
	(A)	Glucagon	(B)	Epinephrine					
	(C)	Insulin	(D)	None of above					
47.	Which o	f the following is correct regar	rding cyclic	photophosphorylation?					
	(A)	O ₂ is produced							
	(B)	Only ATP is produced							
	(C)	Photolysis of water occurs							
	(D)	Both photosystem II and I a	re involved						
18.	Followin	ng is the precursor of naturally	occurring A	uxin:					
	(A)	Methionine	(B)	Tryptophan					
	(C)	Alanine	(D)	Glycine					
19.	Transduc	ction is:							
	(A)	(A) Bacterial mediated viral recombination							
	(B)	(B) Viral mediated viral recombination							
	(C)	Bacterial mediated bacterial	recombinat	ion					
	(D)	Viral mediated bacterial reco	mbination						
0.	Clavular	ic acid added to amoxicillin p	reparations	is meant for:					
	(A)	Increasing the absorption of t	he amoxicil	lin					
	(B)	Preventing the degradation of	famoxicilli	n by beta-lactamase					
	(C)	Increasing the excretion of an	noxicillin	•					
	(D)	All the above							

1.	51. The growth of the bacterial culture in turbidometric measurement is normally expressed
1.	as: (A) Cells per milliliter (C) Optical density (B) Colony forming units per milliliter (D) None of the above
2.	52. Which of the following is NOT directly used in the treatment of viral diseases? (A) Interferon (B) Penicillium (D) Antibodies
3.	53. Feedback inhibition for a particular enzyme catalyzed reaction is mediated by: (A) The product (B) The substrate (C) Enzyme of the next reaction (D) Enzyme of the previous reaction
۷	 Which of the following is most appropriate feature of allosteric enzymes? (A) They are non-Proteinaceous in nature (B) They contain binding site for molecules other than the substrate binding site (C) They catalyze the reactions that are usually non-regulatory in nature (D) Most of these enzymes have hyperbolic enzyme -substrate curve.
	 55. Binding of an inhibitor to enzyme -substrate complex and not to free enzyme is an example of: (A) Mixed inhibition (B) Competitive inhibition (C) Un-competitive inhibition (D) Both (A) and (B)
	56. Generally enzymes act by: (A) Reducing the energy of activation (B) Increasing the energy of activation (C) Reducing the pH (D) Increasing the pH
	43. 57. Contact inhibition is usually NOT the feature of following cells: (A) Normal cells (B) Primary cells (C) Malignant cells (D) Both (A) and (B)

10

5 <u>\$</u> .	During G	-protein coupled receptor activa	tion, t	the adenylate cyclase enzyme is
		by: G _s α–GTP cAMP		G _i α–GDP cGMP
5 9.	eukaryot (A)	f the following molecules directlic cell cycle? Connexins Pannexins	y regu (B) (D)	llate the activity of CDKs during Cyclins Cadherins
60.	(A)	f the following amino acid (s) is th Threonine Tryptophan	(B)	

M.Sc. Bio-Technology/A

BYTH WA
dha 11 5 CD from
d be +1.5 SD from
I when the ratio of
cid
e polar, uncharged
gine
tamate
by
j/mol) is zero, the

	(C)	One electron and two protons	(D)	None of the above	
9.	Which o	ne of the following amino acids ha	s a high	ner propensity for cis peptide bond	d
	formatio	n?			
	(A)	Histidine	(B)	Cysteine	
	(C)	Glycine	(D)	Proline	
10.	Which o	of the following is never (as far as v	ve knov	w) moved across a lipid bilayer b	y
	a carrier	protein?			
	(A)	Ca ²⁺	(B)	Glucose	
	(C)	H ₂ O	(D)	K ⁺	
11.	Cellulos	e, the structural polysaccharide of	plant, i	s a polymer of:	
	(A)	β-D-Glucose	(B)	α-D-Glucose	
	(C)	β-D-Galactose	(D)	α-D-Galacturonic acid	
12.	As far as	s the absorbance of DNA at 260nn	n, whic	ch of the following is correct?	
	(A)	Individual nucleotides>ssDNA>	dsDNA	A	
	(B)	dsDNA>ssDNA> individual nuc	leotide	es antona (de la	
	(C)	ssDNA>dsDNA> individual nuc	eleotide	es	
	(D)	Absorbance remains same			
13.	Molecul	es that are lipophilic generally:			
	(A)	Can cross cell membranes direct	ly thro	ugh the lipid bilayer	
	(B)	Can cross cell membranes only t	hrough	active transport	
	(C)	Can cross cell membranes only t	hrough	carrier proteins	
	(D)	Can cross cell membranes only t	hrough	channel proteins	stantistics.
14.	You wor	uld expect a cell with an extensive	Golgi	apparatus to:	
	(A)	Make a lot of ATP	(B)	Secrete a lot of material	
	(C)	Perform photosynthesis	(D)	Store large quantities of food	
~	N# #2/0#				(T)
LL	M-53685	-A		3	[Turn ove

When NAD⁺ or NADP⁺ undergo reduction to NADH or NADPH respectively,

(B) Two electrons and one proton

they accept the following from the oxidizable substrate:

(A) One electron and one proton

8.

15.	Which	of the following statements is N	OT corre	ect about centrioles?
	(A)	Centrioles are found in anima		
	(B)	Animals cells have two centric		
	(C)	The two centrioles lie paralle	l to each	other
	(D)	Centrioles lie within the centre		
16.	Which	of the following organelles is th	e largest	and most easily observed with the
	light mi	croscope?		
	(A)	Mitochondria	(B)	Chloroplast
	(C)	Nucleus	(D)	Ribosomes
17.	During t	he biosynthesis of urea in the ure	ea cycle,	the two nitrogen atoms are derived
	from:			
	(A)	Two free ammonium groups		
	(B)	Free ammonium group and as	partate	
	(C)	Both nitrogen atoms are derive		rginine
	(D)	One nitrogen atom is derived f		
				Africa (G)
18.	Which o	f the following modifications is	common	to both protein and DNA?
	(A)	Methylation	(B)	SUMOylation
	(C)	Ubiquitination	(D)	Nitrosylation
19.	Acyl can	rier protein of E.Coli (a small pr	rotein), c	ontains which of the following as
	prostheti	c group?		
	(A)	Biotin	(B)	Malonyl CoA
÷.	(C)	Ascorbic acid	(D)	4'-phosphopantetheine
20.		iffering from phenylketoneuria la	ack the fo	
	(A)	Tyrosine ketoneurase	(B)	Phenylalanine pyruvase
	(C)	Phenylalanine hydroxylase	(D)	Phenylalanine ketonase
21.	Dymayrata	1-i1: 1 Cd C 11 ·		Conference of the Conference o
21.		kinase has which of the following	ng charac	eteristics?
	(A)	It is inhibited by ATP		
	(B) (C)	It is dependent on this mine and		
	(C) (D)	It is dependent on thiamine pyr	opnosph	aate
	(D)	It is located in mitochondria		

44.	chain?	on of winch hulloffor inhibits F	'AD-link	ed oxidation in electron transport
	(A)	Amytal	(B)	Antimycin
	(C)	Cyanide	(D)	
23.	Swappi	ng an inactivated allele for a g	gene of in	terest produces a
	mouse	while replacing a gene with an mouse.	other tha	t has an altered function creates a
*	(A)	Knockout, knockdown	(B)	Knockout, gene targeted
	(C)	Knockout, knockin	(D)	Gene targeted, knockin
24.	"Naked	"DNA:		
	(A)	Is free of nucleic acids		n defematologie
	(B)	Is free of the cell		
	(C)	Is free of protein		
	(D)	Contains just the sugar-phosp	hate back	kbone
25.	The RN.	A primer synthesized during the	e replicati	on process in bacteria is removed
	by:	The same of the sa		
	(A)	DNA gyrase	(B)	Primase
	(C)	DNA polymerase I	(D)	DNA polymerase II
26.	Shine Da	algarno's sequence present in m	RNAbin	ds to:
	(A)	3' end of rRNA	(B)	5' end of rRNA
	(C)	5' end of tRNA	(D)	3' end of tRNA
27.	In misma	atch correction repair, the paren	ntal DNA	strand is distinguished from the
		strand by:		
	(A)	Acetylation	(B)	Phosphorylation
	(C)	Methylation	(D)	Glycosylation
28.	In zinc fi	nger proteins, the amino acid re-	sidues tha	at coordinate zinc are:
	(A)	Cys and His	(B)	Asp and Glu
	(C)	Arg and Lys	(D)	Asp and Arg

	(A)	Not grow in this medium				, -, ,
	(B)	Produce blue colonies				
	(C)	Grow more rapidly than cell	ls without re	combinant DNA		
	(D)	Produce white colonies				
31.	Assume	a cloning vector contains an	antibiotic re	sistance gene and an appropri	ate	
	restrictio	n enzyme recognition site in	the lacZ site	. The gene of interest, if insert	ed,	1
	will:					
	(A)	Activate the antibiotic resist	ance gene	e od Ledel nakongel "i –	and were the	
	(B)	Inactivate the antibiotic resis	stance gene			
	(C)	Inactivate the beta-galactos	idase gene			
	(D)	Activate the beta-galactosic	lase gene			
32.	Which o	f the following events occur	s in the reac	tion catalysed by ribonucleot	ide	
	reductas	e?				a v
	(A)	Inhibition of ribonucleotides				
	(B)	Reduction of ribonucleotide	es by thiored	oxin and NADH	december 1	1 ² ,
	(C)	Reduction of purine and pyr	rimidine ribo	nucleoside diphosphates		
	(D)	Regeneration of tetrahydro	folate (THF) by NADPH	a Paratruly correction	
33.	The men	nbrane of mature B cells have	e:			
	(A)	Both IgG and IgM	(B)	Both IgG and IgD	100	
	(C)	Both IgM and IgE	(D)	Both IgM and IgD		
34.	Endoger	nous antigens are presented o	n to the cell	surface along with:		
	(A)	MHC-I	(B)	MHC-II		
	(C)	Fcy receptor	(D)	Complement receptor		
CI	M-53685	-A		6		
CL.	141-22002	AB 20 11 11 11 11 11 11 11 11 11 11 11 11 11		Ø		

(B) Phagemids

(D) YACs

30. In the blue-white screening procedure, bacteria that are transformed with recombinant

plasmid and cultured in media containing ampicillin and X-gal will:

29. Fragment of about 500 kb can be accommodated by:

Plasmid vectors

BACs

(C)

	(A)	They are integral membrane prot	eins	
	(B)	They are present in thousands of i	dentic	al copies exposed at the cell surfce
	(C)	They are made only when the cel	lenco	unters an antigen
	(D)	They are encoded by genes asser	nbled l	by the recombination of segments
		of DNA		
36.	The TCI	R is composed of two different pr	otein c	hains. In minority of T cells, this
	consists	of:		
	(A)	An alpha (α) and beta (β) chain		
	(B)	An alpha (α) and gamma (γ) cha	in	post sen :
	(C)	A beta (β) and delta (δ) chain		
	(D)	A gamma (γ) and delta (δ) chain		
37.	Chromat	tography is based on the:		
	(A)	Different rate of movement of the		
	(B)		ner con	stituents by being captured on the
		adsorbent		
	(C)	Different rate of movement of the	solve	nt in the column
	(D)	None of the above	49	
88.	Most pro	oteins bind SDS in the same ratio	annr	oximately one molecule of SDS
	binds:		, appr	on matery one more are of 525
	(A)	1 amino acid residue	(B)	2 amino acid residues
	(C)	4 amino acid residues	(D)	0.5 amino acids
				expression existing (
19.	On denat	turation the frictional coefficients of	fglobu	ılar proteins:
	(A)			Increases
	(C)	Remains same	(D)	Changes by a factor of 100
10.	Cation	xchangers bind:		eal (a mini di marea). El la autopre di esta cas La alta di di descrit
10.	(A)	Cations	(B)	Anions
	(C)	Both	(D)	None
	(0)	2004		
CL	M-53685	-A		7 [Tui

35. Both BCRs and TCRs share the following properties, except:

- 41. Frederick Griffith used smooth (S) and rough (R) strains of Streptococcus pneumoniae in his classical experiment that showed DNA might be the genetic element. Which one of the following observations gave the clue for this discovery? R strain became S strain when mixed with heat killed S strain (B) R strain remained R strain when mixed with heat killed S strain S strain became R strain when mixed with heat killed R strain (D) R strain became S strain when mixed with live S strain 42. A protein is phosphorylated at a serine residue. A phosphomimetic mutant of the protein can be generated by substituting that serine with: (A) Glycine (C) Aspartate (D) Threonine mutation originates during meiosis while a mutation originates during mitosis. (A) Germinal, somatic (B) Germinal, spontaneous Somatic, germinal (D) Spontaneous, point 44. A frameshift mutation: (A) Replaces one amino acid with another (B) Removes part of the protein (C) Introduces a section of amino acids not normally found Joins two different proteins Consider two compartments, A and B, divided by a membrane permeable only to chloride ions. In compartment A we put 2.0 M NaCl, and in B we put 1.0 M NaCl.
- Which choice below best describes the pattern of ion diffusion?
 - (A) Equal concentrations of Cl-in both compartments at equilibrium; no change in Na+ concentrations from the initial state
 - Some net movement of Cl- from A into B; no change in Na+ concentrations **(B)** from the initial state
 - (C) Some net movement of Cl- from A into B; lesser net movement of Na+
 - Some net movement of Cl- from A into B; lesser net movement of Na+ from A into B

(A) (C)	CO ₂ and hydrogen cyanide	(B)	CO == 11==1=============================	
(C)			CO and hydrogen cyar	nide
(C)	CO ₂ and H ₂ O	(D)	CO and H ₂ O	
The usef	ulness of antibiotics is mostly hamp	pered l	by:	
(A)	Their inability to kill specific bact	eria		
(B)	Difficulties encountered in mass p	roduc	tion	
(C)	The emergence of antibiotic-resis	stant b	acteria	
(D)	The limited types of antibiotic ava	ilable		AT . The same of t
Which or	ne of the following was the most sign	nifican	t difference in the experis	ments that
resulted	in Pasteur's proof of biogenesis be	eing ac	cepted over Needham's	s proof?
(A)	Microbes were never grown in the	ne brot	h	
(B)	Air was present			
(C)	The broth could support life			
(D)	Microbes did not grow until the b	oroth v	vas inoculated	
Which of	f the following mechanisms is antifu	ingal?		
(A)	Inhibit 70S ribosomes			
(B)	Interfere with anaerobic metaboli	sm		
(C)	Inhibit peptidoglycan synthesis			
(D)	Inhibit ergosterol synthesis			
		ntibio	tics kanamycin, streptor	nycin and
(A)	Cephalosporins	(B)	Macrolides	
(C)	Aminoglycosides	(D)	Quinolones	
M-53685	-A		Ø	[Turn over
	(A) (B) (C) (D) Which or resulted (A) (B) (C) (D) Which or (A) (B) (C) (D) To which gentamic (A) (C)	(A) Their inability to kill specific bactor (B) Difficulties encountered in mass processing (C) The emergence of antibiotic-resist (D) The limited types of antibiotic available. The limited types of antibiotic available (D) The limited types of antibiotic available (D) The limited types of antibiotic available (E) The limited types of antibiotic available (A) Microbes were never grown in the (B) Air was present (C) The broth could support life (D) Microbes did not grow until the bound of the following mechanisms is antiful (A) Inhibit 70S ribosomes (B) Interfere with anaerobic metabolic (C) Inhibit peptidoglycan synthesis (D) Inhibit ergosterol synthesis To which one of the following groups, the agentamicin belong: (A) Cephalosporins	(A) Their inability to kill specific bacteria (B) Difficulties encountered in mass product (C) The emergence of antibiotic-resistant bacteria (D) The limited types of antibiotic available Which one of the following was the most significant resulted in Pasteur's proof of biogenesis being acteristic (A) Microbes were never grown in the broth (B) Air was present (C) The broth could support life (D) Microbes did not grow until the broth which of the following mechanisms is antifungal? (A) Inhibit 70S ribosomes (B) Interfere with anaerobic metabolism (C) Inhibit peptidoglycan synthesis (D) Inhibit ergosterol synthesis To which one of the following groups, the antibio gentamicin belong: (A) Cephalosporins (B) (C) Aminoglycosides (D)	(B) Difficulties encountered in mass production (C) The emergence of antibiotic-resistant bacteria (D) The limited types of antibiotic available Which one of the following was the most significant difference in the experimental in Pasteur's proof of biogenesis being accepted over Needham's (A) Microbes were never grown in the broth (B) Air was present (C) The broth could support life (D) Microbes did not grow until the broth was inoculated Which of the following mechanisms is antifungal? (A) Inhibit 70S ribosomes (B) Interfere with anaerobic metabolism (C) Inhibit peptidoglycan synthesis (D) Inhibit ergosterol synthesis To which one of the following groups, the antibiotics kanamycin, streptor gentamicin belong: (A) Cephalosporins (B) Macrolides (C) Aminoglycosides M-53685-A

(B) Mechanoreceptors

(D) Proprioceptors

46. Pain receptors are also known as:

(A) Chemoreceptors

Steroid hormones activate:

(C)

(A)

(B)

(C)

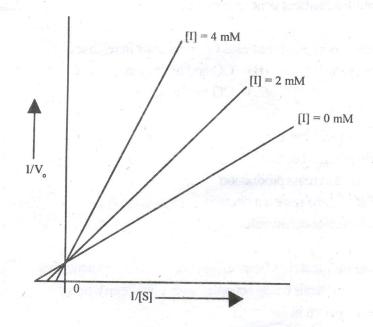
(D)

Nociceptors

G-protein pathways

Membrane-bound enzymes

Intracellular receptors that affect gene expression


Intracellular receptors that activate enzymes

- 53. The catalytic efficiency for an enzyme is defined as:
 - (A) K_{cat}

(B) V_{max}/K_{ca}

(C) K_{cat}/K_{m}

- (D) K_{cat}/V_{max}
- 54. The activity of an enzyme was measured by varying the concentration of the substrate (S) in the presence of three different concentrations of inhibitor [I] 0, 2 and 4 mM. The double reciprocal plot given below suggests that the inhibitor (I) exhibits:

- (A) Substrate inhibition
- (B) Uncompetitive inhibition
- (C) Mixed inhibition
- (D) Competitive inhibition
- 55. The activity of an enzyme is expressed in International Units (IU). However, the S.I. unit for enzyme activity is Katal. One Katal is:
 - (A) $1.66 \times 10^4 \text{ IU}$

(B) 60 IU

(C) $6 \times 10^7 \text{ IU}$

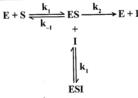
- (D) 10⁶ IU
- 56. CTP preferentially binds to Aspartate transcarbamoylase when the enzyme is in:
 - (A) R-state

(B) T-state

(C) Z-state

(D) Any state

57.	The pa	ir of amino-acids which does	NO	T undergo post-translational
	(A)	Asn-His	(B)	Tyr-Ser
	(C)	Asn-Ser	(D)	Ala-Gly
58.		one of the following aminoaci	ids in	proteins does NOT undergo
	(A)	Ser	(B)	Thr
	(C)	Pro	(D)	Tyr
59.	About 5	0% of all human cancers may invol-	ve an a	abnormal or missing:
	(A)	Oncogene	(B)	Proto-oncogene
	(C)	p53 gene	(D)	BRCA-1 gene
60.	Carcinor	nas are tumors arising from:		
	(A)	Epithelial tissue	(B)	Bone
	(C)	Muscle	(D)	Connective tissue


Note: - All questions carry equal marks (2 each), to be answered in a short and precise manner in the space provided. 1. A protein was purified to homogeneity. Gel exclusion chromatography yielded a molecular weight of 60 kDa, but chromatography in presence of 6 M urea yielded a 30-kDa species. When the chromtography was repeated in the presence of 6 M urea and 10 mM betamercaptoethanol, a single peak corresponding to a molecular weight of 15 kDa resulted. Describe the structure of the molecule. 2. The absorption coefficient of myoglobin (Mol Weight = 17.8 kDa) at 580 nm is 15,000 M-1cm-1. What is the absorbance of a 1 mg ml-1 solution across a 1-cm path? What percentage of the incident light is transmitted by this solution?

CMN-46283

2

that changes a serine resion whether the disulfide pair	n with a single disulfide bond undergoes a mutation due into a cysteine residue. You want to find out ring in this mutant is the same as in the original iment to directly answer this question.	
	,	
out the same function a	s of a yeast protein and a human protein carrying are found to be 60% identical. However, the nences are only 45% identical. Account for this y.	
		-

5. The following reaction represents the mechanism of action of an uncompetitive inhibitor.

Draw a standard Michaelis-Menton curve in the absence and in the presence of increasing amounts of inhibitor. Also show the sketch of a double-reciprocal plot.

•		
,		
	,	

6. What do you understand by semi discontinuous replication? Why does this mode suit DNA replication in a cell?

	n arbitrary titrarion curve for 0.1 M leucine with 0.1 M NaOl t axes are properly labelled. Indicate the points for pK1, pK2
	ow the region of maximum buffering capacity.
	· .
	*
What q	uantity of acetic acid and sodium acetate will be required to
	f 0.05 M acetate buffer having pH of 5.0 (Given pK = 4.76)

CMN-46283

1 :						
						-
A negative stand spontaneity of a	lard free en reaction ? C	ergy chai comment.	nge (ΔG º) does no	ot alway	ys reflect
A negative stand	lard free en	ergy chai	nge (ΔG º) does no	ot alway	ys reflect
A negative stand	lard free en	ergy chai	nge (ΔG º) does no	ot alway	ys reflect
A negative stand pontaneity of a	lard free en	ergy char	oge (ΔG ⁰) does no	ot alway	ys reflect
A negative stand	lard free en	ergy chai	nge (ΔG ⁰) does no	ot alway	ys reflect

CMN-46283

	to form Cystine.
	`~ .
	What is the mechanistic basis for the observation that the inhibitors of AT synthase also lead to an inhibition of the electron-transport chain?
3.	Briefly write down the salient features of B–DNA. Point out the difference with Z–DNA.
3.	Briefly write down the salient features of B–DNA. Point out the difference with Z–DNA.
3.	

CMN-46283

[Turn over

14.	What is the difference between unidirectional and bi-directional modes of replication? Which of the two modes of replication is followed by prokaryotes and eukaryotes?
15.	The enzyme aldolase catalyzes the following reaction in the glycolytic pathway:
	Fructose 1, 6, bisphosphate
	dihydroxyacetone phosphate + glyceraldehyde 3-phosphate
	The Δ G° for the reaction is + 5.7 kcal mol¹, whereas the Δ G in the cell is -0.3 kcal mol¹. Calculate the ratio of reactants to products under equilibrium and intracellular conditions.
	,
СМ	N-46283 8

_			
of			
tes			
_			
_			
_	,		
_			
tic			
iic			
is			
ım			
_			
_			

Determine the initial velocity (V_0) of an enzyme catalyzed reactio Vmax = 2000 micromol/ml.sec., Km = 2 mM and [S] = 20 mM.	n for which
*	
What is mutarotation? Describe with an example.	
What is mutarotation? Describe with an example.	
What is mutarotation? Describe with an example.	
What is mutarotation? Describe with an example.	
What is mutarotation ? Describe with an example.	
What is mutarotation ? Describe with an example.	
What is mutarotation ? Describe with an example.	
What is mutarotation ? Describe with an example.	
What is mutarotation ? Describe with an example.	

. .

		a Usering pairs of sugars consists of anomers,
18.	Ind	icate whether each of the following pairs of sugars consists of anomers,
	onii	ners, or an aldose-ketose pair .
	(0)	d-glyceraldchyde and dihydroxyacetone
	(a)	d-giyeerinaan,
	(b)	d-glucose and d-mannose
	(c)	d-glucose and d-fructose
	60	α -d-glucose and β -d-glucose
	(a)	u-d-glaves
	_	
	-	
		Define the terms: transcription unit, coding strand, template strand and the
	19.	Define the terms: transcription unit, codes
		start point of transcription.

20. Describe the role of sigma factor of RNA polymerase.

CMN-46283

11

[Turn over

 $1. \quad \ \ \, \text{Digestion of an immunoglobulin by the enzyme papain produces:}$

M.Sc. Biotechnology/B

	(A)	One Fab and one Fc	(B)	Two Fab and one Fc
	(C)	One Fab and two Fc		Two fab and two Fc
2.	Which	f the following statements is	correct for the	nin layer chromatography?
	(A)	TLC is time consuming tak	ing 8–12 ho	urs
	(B)	TLC is not well suited for d		
	(C)	TLC is used to identify drug		
	(D)			based on the principle of partition
		chromatógraphy		
3.	During p	olymerization of acrylamide,	TEMED ca	talyses the :
	(A)	Decomposition of persulph		
	(B)	Decomposition of sulphate		
	(C)	Union of two sulphate ions		
	(D)	Union of persulphate and su		
4.	A techn	ique to transfer DNA sepa	rated by a	garose gel electrophoresis to a
	nitrocella	alose filter for analysis is called	d:	
	(A)	Western blotting		Northern blotting
	(C)	Southern blotting	(D)	Eastern blotting
5.	Spectrop	hotometry is based on the pri	inciple of :	
	(A)	Beer's law	(B)	Beer-Lambert's law
	(C)	Lambert's law	(D)	Dubois law
6.	Which o	f the following types of oxid	oreductase	enzymes usually form hydrogen
		as one of its products?		
	(A)	Dehydrogenases	(B)	Oxygenases
	(C)	Oxidases	(D)	Peroxidases
7.	In case of	competitive inhibition:		
	(A)	Km for the substrate shows	an increase	in presence of inhibitor
	(B)	Km for the substrate shows		
	(C)	Km remains unchanged in p		
	(D)	Km increases or decreases of	depending u	apon the nature of substrate
		D		2
CM	N-45547-	-В		2 ⇔

8.	Which	of the following amino acid resid	ue is co	oncerned with metal binding at t	he
	active s	ate of many proteins like carboxyp	eptidas	se A, alkaline phosphatase?	
	(A)	Histidine		Methionine	
	(C)	Cysteine	(D)	Proline	
9.	Which o	of the following necessarily results	s in the	formation of an enzyme-substra	te
		Allosteric regulation	(D)		
	(C)	Substrate strain	(B)	Covalent catalysis	,
	(0)	Substrate strain	(D)	Acid-base catalysis	
10.	The gag	gene (oncogene) in Rous Sarcon	na Viru	s codes for :	
	(A)	Group specific antigens		Reverse transcriptase	
	(C)	Glycoproteins		Tyrosine kinase	
11.	Which o	of the following statements is in		. Dea .	
	(A)	of the following statements is incor Gene is located on short arm of	rect ab	out P33 tumor suppressor gene	•
	(B)	Product is nuclear phosphoprote	chromo	osome 15	
	(C)	P53 is not required for normal ce	III 01 3	3 KDa	
	(D)	P53 acts as a transcriptional regu	ilator	iopment	
12					
12.	kas prote	ein is a plasma membrane G prote	in that	plays a central role :	
	(A)	In the transmission of signals from	extern	al growth factors to the cell interio	r
	(B)	In the transmission of signals from	interna	al growth factors to the cell exterior	r
	(C)	Both (A) and (B)			
	(D)	None of the above			
13.	Chronic	myelogenous leukemia caused by	abl one	cogene is produced by ·	
	(A)	Amplification		Point mutation	
	(C)	Rearrangement		Translocation	
14.	The black	k and yellow pigments in coats of	nate ore	dotomically VIII to	
	of alleles.	. cb (black) and cy (yellow). Males	are eit	her black (ab) armalland (ab)	
	females a	are either black (cbcb), calico with	natche	s of black and notables a few lines	
	(cbcy), or y	yellow (c ^y c ^y). What genotypes and	hheno	types would be expected	
	the offspr	rings of a cross between a black fe	male a	ad a vallous mala?	
	(A)	Genotype of female offsprings cb	and n	henotype coling and construct of	
	, ,	male offsprings cb and phenotype	black	nenotype canco and genotype of	
	(B)	Genotype of female offsprings c	and pl	enotype black and construe of	
		male offsprings cbcy and phenotyp	e calio	o	
	(C)	Genotype of female and male offs	prings	c ^b and phenotype black	
	(D)	Genotype of female and male offs	prings	cbcy and phenotype calico	
CMI	N-45547_				
C1111	1334/-	·U		3,	[Turn over

15.	5. The chromatids of a chromosome are usually not identical sisters along their entire							
	length be	cause of:						
	(A)	Crossing over						
	(B)	Formation of chiasmata						
	(C)	Crossing over and formation of	fchiasma	ata in prophase I				
	(D)	Crossing over and formation of	f chiasma	nta in prophase II				
16.	Shuttle v	ector is a genetically engineered p	plasmid o	containing sequences from:				
	(A)	E. coli and yeast	(B)	E. coli and retrovirus				
	(C)	Yeast and retrovirus	(D)	E. coli and Salmonella				
17.	During n	nutation when pyrimidine base	is replac	ed with a purine or the other way				
	around.	This is called:				,		
	(A)	Transition mutation	(B)	Transversion mutation				
	(C)	Silent substitution	(D)	Frame shift mutation				
18.	Which of	f the following algae is non-photo	osyntheti	c?				
	(A)	Prototheca	(B)	Chlorella				
	(C)	Euglena	(D)	Diatoms				
19.				ubition of transcription of mRNA				
	from DN	A by binding to and inactivating						
	(A)	Erythromycin	(B)	Tetracycline				
	(C)	Trimethoprin	(D)	Rifampin				
20				() ()				
20.			sistance	(r) factors, penicillin resistance is]		
		y an inducible :	, (D)	Alaba Tastanasa				
	` '	Beta-Lactamase	. ,	Alpha-Lactamase		•		
	(C)	Beta-Galactamase	(D)	Alpha-Galactamase				
21.	When th	e donor DNA that is injected into	o the reci	pient cells does not integrate into				
		ient DNA, the transduction is ter						
		Generalized transduction	(B)					
	` '	Restricted transduction	` '	Abortive transduction				
	(-)		(-)					
CM	N-45547	-В		4 ⇔				
				⇔				

	(A) Is independent of length of days and night temperature									
	(B)	Starts only when short days and relatively low night temperatures are								
		dominant		4						
	(C)	Starts only when long days and	relativ	vely high night temperatures are						
		dominant								
	(D)	Starts only when long days and	relati	vely low night temperatures are						
		dominant								
23.	_	ation is regulated by the movement								
	(A)	Epidermal cells of the leaves		Guard cells of the stomata						
	(C)	Subsidiary cells	(D)	Mesophyll cells						
24.	Tricuspio	I valve lies:								
		Between left atrium and left ventri	cle							
	(B)	Between right atrium and right ver	ntricle							
	(C)	At entrance to pulmonary trunk								
	(D)	At entrance to aorta								
25.	Which of	the following does not play role as se	and d	om concessor in homeonal action 2						
25.	(A)	Cyclic AMP		Protein kinase						
	. ,	•	` '							
	(C)	Phosphoinositides	(D)	Cyclic CMP						
26.	Water ha	s a biological significance because	it is :							
	(A)	Amphoteric in nature	(B)	Neutral in nature						
	(C)	Amphipathic in nature	(D)	Dipolar in nature						
27.	2.01 × 1	023 LLC1 1 1:-								
21.		0 ²³ HCl molecules are dissolved in of 4 litres. The molar concentration								
			or the	solution is :						
	(A)									
	(B)									
	, ,	0.125M								
	(D)	1.25M								
28.	The site	that provides information on proper	rties o	f amino acids, bond geometry and						
	prediction	on about protein structure is:								
	(A)	PROWL	(B)	Cn3D						
	(C)	PDB	(D)	NCBI						
СМ	N-45547	_R		5	Turn over					
C141		_		5.	[2011.0161					

22. In certain types of potato (Solanum tuberosum), formation of tubers:

		•		
29.	In a naci	tivale alcanoad distribution accults.		
27.	(A)	tively skewed distribution results:		
	(A)	lie between the values of the mod		an extremely large and median will
	(B)			l and median will lie between the
	(-)	value of the mode and the mean		The second control in
	(C)	The mean will have same value a	s the	mode and median will lie between
		them		
	(D)	Median will have small value as c	ompai	red to mean and the mode will lie in
		between them		
		`, `~ .		
30.		of entropy is:		
	(-/	J K ⁻¹ mol ⁻¹	` '	J mol-1
	(C)	J-1 K-1 mol-1	(D)	J K mol ⁻¹
31.	The pair	of molecules having similar geome	try:	
	(A)		-	H,O, and C,H,
	(C)	CO ₂ and SO ₂	(D)	NH, and PH,
32	Which	f the following interactions is not a	nort o	fvon der Wools interactions ?
٠	(A)		part	of varider waars interactions?
	(B)	1	15	
		Dispersion forces		
	(D)			
33.	The prine	cipal buffer present in human blood	1:	
	(A)	NaH ₂ PO ₄ + Na ₂ HPO ₄	(B)	CH ₃ COOH + CH ₃ COONa
	(C)	$H_3PO_4 + NaH_2PO_4$	(D)	$H_2CO_3 + HCO_3^-$
34.	Alpha–Γ	D-Glucose and Beta-D-Glucose a	re the	two:
	(A)	Epimers		Anomers
	, ,	-	(-)	

(C) Racemers

(A) Cholera toxin

(C) VitaminA

35. G_{MI} ganglioside is known to be the receptor in human intestine for:

(D) Mesomers

(D) Carotenoids

(B) E. coli

36.	Vitamin	A deficiency causes:						
	(A)	Beri beri	(B)	Pernicious anemia				
	(C)	Pellagra	(D)	Xerophthalmia				
37.	7. Peptide bonds that involve the imino nitrogen of proline readily attain the:							
		trans configuration		cis configuration				
	(C)	E-configuration		Z-configuration				
		•	` '					
38.	Biologic	cal membranes are associated with a	ll of t	he following except:				
		Prevention of free diffusion of ion						
	(B)	Release of proteins when damage	ed					
	(C)			charged molecules				
	(D)							
39.	Which o	of the following is both a Bronsted	acid a	nd a Bronsted base in water 2				
	(A)	H ₃ PO ₄		H ₂ CO ₃				
	. ,	NH ⁺ ,		NH,				
	(-)	4	(D)	14113				
40.		ndria are associated with all of the f	ollow	ing except :				
	(A)	ATP synthesis			. 1			
		Protein synthesis			1			
	(C)	Hydrolysis of various molecules a	t low	pH				
	(D)	Apoptosis			į.			
41.	Lysosom	al membrane disruption within cell	s can l	ead to pathological condition:	•			
		Arthritis		Allergic responses				
	(C)	Muscle disease	(D)	All the above				
42.	Succinate	e dehydrogenase is inhibited by:						
		Oxaloacetate	(B)	Malonate				
	(C)	Both (A) and (B)	` '	None of the above				
43.	In glycoly	vsis ATP synthesis is catalyzed by:						
		Hexokinase						
	` '	6-phosphofructo-1-kinase						
		Glyceraldehyde-3-phosphate dehy	dena	2000				
		Phosphoglycerate kinase	uroge	chase				
	(2)	- mospitogrycetate kiliase						
CM	N-45547-	В		7	[Turn over			

44.		of the following is not regarded as g	lucon	neogenic enzymes?
		Fructose 1, 6-bisphosphatase	(B)	Glucose 6-phosphatase
	(C)	Phosphoglucomutase	(D)) Pyruvate carboxylase
45.	Phospho	olipases A ₁ and A ₂ :		
	(A)	Have no role in phospholipid syn	thesis	s
	(B)	Remove a fatty acid in sn-1 or s	<i>n</i> −2 p	position so that it can be replaced by
		another in phopholipid synthesis		• •
	(C)	Hydrolyse phophatidic acid to a	diglyc	ceride
				fatty acids in sn-1 and sn-2 positions
		during synthesis		
46.	Copper i	s an essential component, particip	ating i	in the transfer of electrons of:
		Complex I		Complex II
	(C)	Complex III	(D)	Complex IV
47.	Which o	f the following is the most dangero	us rea	active oxygen species (ROS)?
		H ₂ O ₂		0,
	(C)	ОН		O ₂
48.	Stimulat	ion of oxygen uptake by ADP duri	ng oxi	idative phosphorylation is inhibited
	by:			
	(A)	Oligomycin		
	(B)	Dinitrophenol		
	(C)	Carbonyl cyanide-p-trifluorometl	юху р	phenyl hydrazone
	(D)	All the above		
49.	Using the	equation:		
	ΔG^{α}	= nF ΔE_o (Faraday constant = 9	6.5 K	(JV-1)
				ron transfer reactions between NAD+
		couple $(E_0' = -0.32 \text{ V})$ and $\frac{1}{2} O_2$		
		-220 KJmol ⁻¹		+220 KJmol ⁻¹
	(C)	-110 KJmol ⁻¹		+110 KJmol ⁻¹
CMI	N-45547-	В		8
				\Leftrightarrow

50.	. Replication:						
	(A) Is semi conservative						
	(B)	(B) Requires only protein with DNA polymerase activity					
	(C)	Requires a primer in eukaryotes	but no	t in prokaryotes			
	(D)	All the above					
51.	Methyla	tion of bases in DNA usually:					
	(A)	Facilitates the binding of transcri	ption	factor to the DNA			
	(B)	Makes a difference in activity onl	y if it	occurs in an enhancer region			
	(C)	Inactivates DNA from transcription	on	·			
	(D)	Prevents chromatin from unwinding	ng				
52.	Termina	tion of protein synthesis:					
	(A)	Requires a stop codon to be locate	d at P	site of the large ribosomal subunit			
	(B)	Occurs when a non-ribosomal pro	tein re	elease factor binds to the ribosomes	;		
	(C)	Does not require energy					
	(D)	Coincides with the degradation o	f the r	ibosomes			
53.	A group	of operons that are controlled by a	comr	non repressor is called:			
	(A)	Regulon		Transposon			
	(C)	Meselson	(D)	Morgan			
54.	A techn	ique for defining gene arranger	nent i	in very long stretches of DNA			
		0 Kb) is:		, ,			
	(A)	RFLP	(B)	Chromosome walking			
	(C)	Nick translation	(D)	Southern blotting			
55.	Develop	ment of recombinant DNA method	lologi	es is based on discovery of:			
	(A)	PCR		Restriction endonucleases			
	(C)	Plasmids	` '	Yeast artificial Chromosomes			
56.	A sequer	ace of duplex DNA that is the same	when t	he two strands are read in annosite			
	direction	•		ne two saturas are read in opposite			
	(A)	Primosome	(B)	Splicosome			
	(C)	Palindrome	, ,	None of the above			
	` '		(D)				
CM	CMN-45547-B			2	[Turn over		

- 57. The plasmid vector pB322 has:
 - (A) Tetracycline resistant gene
 - (B) Ampicilin resistant gene
 - (C) Both (A) and (B)
 - (D) Tetracycline and ampicilin sensitive gene
- 58. Haptens:
 - (A) Can function as antigens
 - (B) Never act as antigenic determinants
 - (C) Strongly bind to antibodies specific for them
 - (D) Can directly elicit the production of specific antibodies
- 59. IgG:
 - (A) Has the highest molecular weight of all the immunoglobulins
 - (B) Is found primarily in mucosal secretions
 - (C) Plays an important role in allergic responses
 - (D) Contains carbohydrate covalently attached to the H chain
- 60. Hybridoma technology was developed by:
 - (A) Kohler and Milstein
- (B) Sanger and Maxwell
- (C) Meselson and Stahl
- (D) Watson and Crick

M.Sc. Biotechnology-I/A

1.	According to Coulomb's law, the solubility of a solute increases when:					
	(A)	Dielectric constant of the solvent is increased				
	(B)	Dielectric constant of the so	lvent is decreased	1		
	(C)	Charge of the ions is increas	sed			
	(D)	,Both (B) and (C)				
2.	Proton i	n aqueous solution mainly exis	ete ae ·			
	(A)	Hydride ion	(B)	Proton		
	(C)	Hydronium ion	(D)	All of the above		
		•	(2)	· M of the dooye		
3.	[OH] ⁻ i	n aqueous Solution A is 10-	⁶ M, Solution B	is 10 ⁻⁷ M and Solution C		
	is 10 ⁻⁸ M	I, which of the following is true	: :			
	(A)	Sol. A is basic, B is neutral a	ınd C is acidic			
	(B)	Sol. A is acidic, B is neutral	and C is basic			
	(C)	Sol. A is neutral, B is acidic	and C is basic			
	(D)	Sol. A is acidic, B is basic an	d C is neutral			
4.	Isoelectr	ic point is a point at which:				
	(A)	Net charge of a protein is max	ximum			
	(B)	Net charge of a protein is zer				
	(C)	Net charge of a protein is positive				
	(D)	Net charge of a protein is neg				
5 .	Which o	f the following aminoacid can	establish a covale	ently linkage between two		
		of a protein?	obaconon a co yan	mikage between two		
	(A)	Proline	(B)	Tyrosine		
	(C)	Serine	(D)	Cysteine		
			, ,			
6.	Phospho	diester bond in RNA is formed	l between phosph	oric acid and:		
	(A)	2'-OH of one ribose and 5'-	OH of adjacent ri	bose		
	(B)	3'-OH of one ribose and 5'-	OH of adjacent ri	bose		
	(C)	3'-OH of one ribose and 3'-6				
	(D)	3'-OH of one ribose and 4'-0				

	(A)	Isoelectric focussing						
	(B)	Gel-exclusion chromatography						
	(C)	Denaturating polyacrylamide gel electrophoresis						
(D) Southern blotting								
		•						
8.	8. Which of the following chemical can reduce disulphide bonds of proteins?							
	(A)	β -mercaptoethanol						
	(B)	Sodium dodecayl sulphate (SDS)						
	(C)	Urea						
	(D)	Sodium thiocynate						
9.	Which o	f the following is inversely related with th	e electro	ophoretic mobility of ion in				
	a mediur	n?						
	(A)	Charge on ion	(B)	Electric force				
	(C)	Viscosity of medium	(D)	All of the above				
10.	Ultracen	trifugation is used for :						
	(A)	Protein separation .		•				
	(B)	Nucleic acid separation						
	(C)	Protein molecular weight determination	ı					
	(D)	All of the above						
11.	Partial d	ouble bond character of peptide bond is	because	e of the following reason:				
	(A)	Its carbon is bonded to electronegative pair of electrons	e atom	and the nitrogen has loan				
	(B)	Its carbon is bonded to carbon side ch	ain					
	(C)	Its nitrogen is bonded to carbon side cl	hain					
	(D)	Both (B) and (C)						
12.	Glycosio	dic bond is present in the following:						
	(A)	Amino acids	(B)	Nucleotides				
	(C)	Monosaccharide	(D)	Fatty acids				

Which of the following technique is NOT used for protein separation?

7.

13	Red co	plour of blood is because of	`•	.*		
	(A)	· ·				
	(B)		-			
	(C)					
	(D)	Antibodies				
14	. Which	of the following is NOT true	e about trialvo	d C		
	14. Which of the following is NOT true about triglycerides?(A) They form major part of biological membranes					
	(B) They are non-polar in nature					
	(C)	They act as energy reserv		cells		
	(D)	They are esters of fatty ac				
	, B-7 B-7					
15.	The dete	erminants of blood groups a	ıre :			
	(A)	Glycoproteins		(B)	Phospholipid	
	(C)	Nucleic acid		(D)	Lipoproteins	
16.	16. Which of the following statement is NOT true about enzymes?(A) They are mostly proteinaceous in nature					
	(B)	Their activity is regulated	cous in nature			
	(C)	They act as catalysts by inc	creasing the ac	tivatio	n anoros	
	(D)	They are mostly sterospec	ific	n valio	nenergy	
17.	An enzyr	ne performs catalysis by usin	ng nucleophilic	attack	on the substrate which of	
	the follow	ving amino acid is the most	likely candidat	te for ne	erforming such attack	
	(A)	Valine		(B)	Isoleucine	
	(C)	Serine		(D)	Proline	
18.	18. If thyroid stimulating hormone (TSH) is found raised above the normal value, it indicates:					
	(A)	Hyperthyroidism				
	(B)	Hypothyroidism			•	
	(C)	Both (A) and (B)				
		Raised TSH has no relation	with thyroid fi	inction		

19.	Cells not responsive to insulin hormone is because of the following reason:						
	(A)	-					
	(B)	Cell lacks the Protein channel thro	ugh which i	nsulin enters the cell			
	(C)						
	(D) Cell has specific proteases which destroy insulin						
	` ,	,		•			
20.	In Musc	le, during vigorous activity and deplet	ed oxygen c	conditions, glucose is mostly			
	converte			•			
	(A)	Acetyl-CoA	(B)	Lactate			
	(C)	Ethanol	(D)	Both (B) and (C)			
21.	During a	action potential (depolarization) in t	he neurons.	the movement of Na+ions			
		the following direction:	 ,	and the verification to the			
	(A)		of neuron				
	(B)	Na+ moves from nucleus to cytoso					
	(C)	Na+ moves from inside to outside of					
	(D)	Na ⁺ moves from cytosol to nucleus	s of neuron				
22.	Followir	ng conditions favour photorespiration	over photo	osynthesis:			
	(A)	Presence of low O ₂ and raised CO	_	-			
	(B)	Presence of low O ₂ and low CO ₂ r	_				
	(C)	Presence of raised O ₂ and low CO					
	(D)	Presence of raised O ₂ and raised O					
23.	Which o	f the following is NOT true about bil	e salts?				
	(A)	They help in lipid aggregation					
	(B)	They help in lipid digestion					
	(C)	They help in lipid absorption					
	(D)	They help in absorption of lipid solu	ıble vitamin	S			
24.	Followin	ng combination is the best for the indi poletion:	viduals suf	fering from severe salt and			
	(A)	Proteins, salts and water	(B)	Salts and water			
	(C)	Vitamins, salt and water	(D)	Glucose, salt and water			
CZB	- 29316 (A	A)	5	[Turn over			

4	44 THCH	of the following metabolic pathway	reads to gluce	ose synthesis ?
	(A)	Phospho pentose pathway	(B)	Gluconeogenesis
	(C)	TCA cycle	(D)	None of the above
26.	Majorit	y of the chemotherapeutic agents u	ısed in cancer	treatment are:
	(A)	Protein translation inhibitors	(B)	Transcription inhibitors
	(C)	DNA synthesis inhibitors	(D)	Repair system inhibitors
27.	Which	of the following statement is NOT of	correct for DN	IA Replication?
	(A)	It is semi-discontinuous		
	(B)	It is semi-conservative		
	(C)	DNA polymerase synthesizes D	NA in 3' to 5'	direction
	(D)	DNA polymerase require oligon	ucleotide to st	art DNA synthesis
28.	Which	of the following statement for proka	aryotic transci	iption is NOT correct?
	(A)	mRNA transcribed has same se gene	equence as tha	at of template strand of its
	(B)	mRNA transcribed has same see	quence as the	sense strand of its gene
	(C)	Prokaryotic mRNAs can be poly	cistronic	
	(D)	Transcription and translation in p	rokaryotic is o	coupled
29.	Starting	from first nucleotide, how many arr	nino acid codir	ng codons are present in the
	followin	g synthetic mRNA, 5'-AUGACC	ACACAGGA	CUAGUAACAC-3':
	(A)	5	(B)	6
	(C)	7	(D)	8
30.	Which o	f the following is NOT correct abo	out type-II rest	riction endonucleases?
	(A)	They cleave phosphodiester bone		
	(B)	They cleave both strands of DNA	A	
	(C)	They recognize specific DNA sec	quences	
	(D)	They cleave bond between nitrog	genous base a	nd the deoxyribose
31.	The uniq	ue feature of the enzyme Taq polym	perase used in	Polymerase chain reaction
	(A)	High fidelity	(B)	High thermal stability
	(C)	No cofactor requirement	(D)	All of the above

32.	. Which of the following is NOT correct about clonning vectors?				
	(A)	They have selectable marker gene		14	
	(B)	They have multiple cloning site			
	(C)	They do not have any restriction endo	nuclease	site	
	(D)	They have origin of replication			
33.	Telomere	es perform the following function(s):			
	(A)	They help in end replication of linear	DNA		
	(B)	They prevent ligation of chromosoma	l ends		
	(C)	They prevents exonucleases from atta	cking the	chromosomal ends	
	(D)	All of the above			!
34.	Which o	f the following is NOT a membrane bo	und cell c	organelle?	
	(A)	Peroxisome	(B)	Nucleosomes	
	(C)	Glyoxysomes	(D)	Lysosomes	
35.	If you ha	ve a chloroplast in an aqueous solution	n, which c	of the following condition:	S
	will mak	e the chloroplast produce oxygen:			
	(A)	Illuminating the chloroplast containing	solution		
	(B)	Placing the chloroplast containing sol	ution in d	ark	
	(C)	ATP addition			
	(D)	NADPH addition			
36.	Which o	f the following is NOT present inside n	nitochono	Iria?	
	(A)	DNA	(B)	RNA	
	(C)	Ribosomes	(D)	None of the above	
37.	Phospho	orylase is an enzymes that:		,	
	(A)	Add inorganic phosphate to other sul			
	(B)	Transfer phosphate from ATP to other	er substra	tes	
	(C)	Removes phosphate from substrates		·	
	(D)	All of the above			
38.	If a husb	and has A blood group and the wife has	B blood g	group, their offspring's ma	у
		following blood group:			
	(A)	A only	(B)	Bonly	
	(C)	AB only	(D)	A, B, AB and O	
CZ	B-29316((A)	7		[Turn over

39	39. If a plant, homozygous for red flowers and heterozygous for tallness is bred with a plant homozygous for yellow flowers and homozygous for dwarfness (Red colour and tallness are dominant over yellow colour and dwarfness). What will be the percentage of plants in F1 progeny having red flowers and being tall?				
	or plan	is in r 1 progeny having red	flowers and be	eing ta	
	(A)			(B)	50%
	(C)	75%		(D)	100%
40.	Which	of the following represents	the interphase '	?	•
	(A)			(B)	G1, S, G2
	(C)	M, G2, S		(D)	G1, M, G2
41,	Mismat	ch DNA repair system is ab	le to distinguis	sh new	ly synthesized DNA strands
	from old	der strands because:			,
	(A)	New strands do not conta	ain Cytosine b	ases	
	(B)	Old strands are methylate			are not
	(C)	New strands are methyla			
	(D)	New strand has some Ura	acil bases inco	rporat	ed
42.	Which o	of the following is having the	highest antiger	nicity?	
	(A)	Proteins		(B)	Carbohydrates
	(C)	Lipids		(D)	Fatty acids
43.	Which o	f the following terms is NO	T related to an	tibody	??
	(A)	Constant region		(B)	Fab fragment
	(C)	Hinge region		(D)	Epitope
44.	Which or	f the following antibodies ar	e mainly found	in sec	eretions?
	(A)	lgG		(B)	IgM
	(C)	Ig.A		(D)	IgE
43.	Which of	the following pathways of	complement sy	ystem	is activated by antibody?
	(A)	Classical pathway		(B)	Alternate pathway
	(C)	Lectin pathway		(D)	All of the above
46.	How man	ny ml of one molar NaCl so ution?	lution are requ	uired to	o prepare 10ml of 200mM
	(A)	8 ml	((B)	2 ml
	(C)	11.7 ml		D)	0.0117 ml

47.	Which of	the following molecular events can lead	to cance	er ? [*]
	(A)	Chromosomal rearrangement		
	(B)	Altered regulatory sequences		
	(C)	Gene amplifications		
	(D)	All of the above		
48.	Cancer is	often as the result of following events:		
	(A)	Activation of oncogene to proto-oncog	ene	•
	(B)	Activation of Tumor suppressor gene to	proto-	oncogene
	(C)	Activation of oncogene to tumor suppr	essor ge	ne
	(D)	Activation of proto-oncogene to oncog	ene	
49.	Homoly	tic cleavage of -C-H-bond results in the	formati	on of:
	(A)	Carbon radical and hydrogen atom		
	(B)	Carbanion and proton		
	(C)	Carbocation and hydride ion		
	(D)	Carbanion and hydride ion		
50.	Additio	n of groups to double bonds or formatio	on of do	uble bonds by removal of
		s performed by the following class of enz		
	(A)	Ligases	(B)	Mutases
	(C)	Lyases	(D)	Epimerases
51.	Which	of the following is the unit of K_{m} in the Mi	chaelis-	Menten equation?
	(A)	 μ M	·(B)	μM/Sec
	(C)	1/second	(D)	Second
52.	Oxidati	ve phosphorylation is favoured when:		
	(A)	NAD+/NADP ratio is high		
	(B)	NADH/NAD+ ratio is high		
	(C)	NAD ⁺ /NADP ratio is low		•
	(D)	Both (B) and (C)		
53.	Which	of the following is a plant stress hormone	?	
55.	(A)		(B)	Gibberlin
	(C)		(D)	Cytokinin

produce transgenic plants? (A) Nostoc (B) Thermus aquatics (C) Agrobacter staphylococcus albus (D) Agrobacterium tumefaciens	nt
(B) Thermus aquatics (C) Agrobacter staphylococcus albus	nt
(C) Agrobacter staphylococcus albus	nt
1 7	ıt
(=) 1-2-10-000 territoria territoria (=)	nt
•	nt
55. The resistance of 4 ohm, 8 ohm and 16 ohm are connected in parallel, the equivaler	
resistance is:	
(A) 16/7 (B) 16/9	
(C) 7/16 (D) 7/9	
56. Which of the following is correct for the oxidation-reduction reaction	:
$Fe^{3+} + Cu^+ \rightarrow Fe^{2+} + Cu^{2+}$:	
(A) Cu ⁺ acts as reductant and is oxidized	
(B) Fe ³⁺ acts as reductant and is oxidized	
(C) Cu ⁺ acts as oxidant and is reduced	
(D) Both (B) and (C)	
57. Boat and chair conformations are found:	
(A) In pyranose sugars (B) In furanose sugars	
(C) Both (A) and (B) (D) None of the above	
58. Following virus has a single-stranded circular genome:	
(A) Bacteriophage lambda (B) $\phi X174$	
(C) Simian virus 40 (D) Herpes simplex virus	
59. Ampicillin resistance is conferred by:	
(A) Streptokinase (B) Amylase	
(C) β -lactamase (D) Primase	
60. A bacterial strain is designated as High frequency recombination (Hfr) when:	
when the designation and the first inequality recombination (1111) when the	
 (A) F factor is integrated in its chromosome (B) F factor DNA alone exists as extra chromosomal DNA 	
 F factor and some bacterial chromosomal DNA with it and remains as extra chromosomal DNA 	
(D) F factor DNA is absent.	

How much current will an electric bulb draw from a 220 V source, if the resistance

Bio-technology

	of a built	filament is 1200\(\Omega\)?					
	(a)	0.11 A	(b)	0.2 A			
	(c)	0.18 A	(d)	1.0 A			
2.	200 ml o	of 0.3 M NaCl is prepared by	dissolving t	he following amount of NaCl:			
	(a)	3.51 gms	(b)	35.1 gms			
	(c)	0.35 gms	(d)	0.03 gms			
3.	How ma	any micro litres (μl) of 1m M	solution of l	NaCl is required to make 20 ml of			
	1μM Na	Cl solution ?					
	(a)	200	(b)	20			
	(c)	0.2	(d)	0.02			
4.	Which o	f the following is a programm	ing language	e?			
	(a)	Lotus	(b)	Pascal			
	(c)	Netscape *	(d)	MS-Outlook			
5.	Ice is les	ss dense than liquid water, bec	cause:				
	(a)	In ice H ₂ O molecules make	more hydro	gen bonds with each other than in			
		liquid state					
	(b)	In ice H ₂ O molecules make less hydrogen bonds with each other than in					
		liquid state					
	(c)	Hydrogen bonding has no role to play in the density of ice					
	(d)		H ₂ O molecul	les in liquid state are stronger			
		than in ice					
6.	Formati	on of native structure of prote	ins from its	denatured form has:			
	(a)	$\Delta H > 0$ and $\Delta S < 0$	(b)	$\Delta H < 0$ and $\Delta S = 0$			
	(c)	$\Delta H = 0$ and $\Delta S > 0$	(d)	$\Delta H < 0$ and $\Delta S < 0$			

58.	Which of the following amino acid is the most often target of protein kinases activated				
		th factors receptors?		,	
	(a)	Serine	(b)	Tyrosine	
	(c)	Threonine	(d)	Histidine	
59.	Adenyla	te cyclase is involved in :		8	
	(a)	Conversion of cAMP to AMP	(b)	Conversion of cAMP to ADP	
	(c)	Conversion of ATP to cAMP	(d)	All the above	
50.	Just prio	r to G2 phase of cell cycle, the dipl	loid hu	man body cell contains:	
	(a)	23 chromatids	(b)	46 chromatids	
	(c)	69 chromatids	(d)	92 chromatids	

	(c)	Glutamate	(d)	Alanine
8.	Arginin	e in acidic medium will have net:		
	(a)	*Positive charge	(b)	Negative charge
	(c)	Neutral charge	(d)	Zero charge
9.	If you ha	ave to incorporate an amino acid in	a prot	tein where sharp turn occurs, with
	which o	of the following groups you will re	eplace	the "R" of a general amino acid
	(R-CH	(NH ₂)–COOH):		
	(a)	-CH ₃	(b)	-CH ₂ OH
	(c)	-Н	(d)	-CH ₂ -CH ₃
10.	Followin	ng is the relative percentage of single	bases	obtained from the double stranded
	DNAs is	solated from different bacteria. Usin	g this c	lata, which DNA will have highest
	melting	temperature?		
	(a)	Adenine (20%)	(b)	Guanine (30%)
	(c)	Cytosine (25%)	(d)	Thymine (15%)
11.	Trans-fa	tty acids found in various fast food	s have	e all the following characteristics,
	except:			
	(a)	They increase the shelf life of veg	etable	oils
	(b)	They are made by partial hydroge	natior	n of unsaturated fatty acids
	(c)	They prevent rancidity of fatty ac	ds	
	(d)	None of the above		
12.	In aqueo	us solution, D-glucose exists as a n	nixture	eof:
	(a)	α-D-Glucopyranose and Linear I	O-Glu	cose
	(b)	β-D- Glucopyranose and Linear	D-Glu	cose
	(c)	Only Linear D-Glucose		
	(d)	α-D-Glucopyranose, β-D-Gluco	pyrano	ose and Linear D-Glucose

3

[Turn over

On titration, which of the following substances will have three different pK values?

(b) Glycine

7.

TLV-17118

(a)

Acetic Acid

13	13. Eukaryotic cells are physically linked by intercellular channels made of following					
	proteins:					
	(a)	Chalthrins	(b)	Integrins		
	(c)	Connexins	(d)	Caderins		
		•				
14.	. Protein	as with KEDL amino acid sign	gnature are de	estined to:		
	(a)	Endoplasmic reticulum	(b)	Golgi hodies		
	(c)	Mitochondria	(d)	Lysosomes		
15.	Cytosk	eleton includes all the follow	ing, except:			
	(a)	Microtubules	(b)	Myosin filaments		
	(c)	Actin filaments	(d)	Intermediate filaments		
16.	Nucleic	acids are NOT present in the	e following c	ell compartment		
	(a)	Nucleus	(b)	Cytosol		
	(c)	Mitochondria	(d)	None of the above		
17.	Anaerol	oic degradation of glucose in	n muscle, via	glycolysis leads to the formation		
	of:					
	(a)	Lactate	(b)	Ethanol		
	(c)	Pyruvate	(d)	Acetyl CoA		
18.	During s	tarvation which of the follow	vina metahali	a nothyrous door to a		
	(a)	Gluconeogenesis				
	(c)	Glycogen breakdown	(b) (d)	Glycogen synthesis All the above		
	. ,	,	(u)	All the above		
19.	SGOT er	nzyme, a diagnostic marker o	of liver damag	ge is indicative of disturbance in:		
	(a)	Nucleotide metabolism		Carbohydrate metabolism		
	(c)	Amino acid metabolism		Fatty acid metabolism		

	(c)	Both (a) & (b)	(d)	None of the above		
21.	In the following oxidation-reduction reaction,					
	NADH+H++ E-FMN →NAD++ E-FMNH ₂ catalyzed by NADH dehydrogenase,					
	which one is electron acceptor and oxidizing agent?					
	(a)	NAD ⁺	(b)	E-FMNH,		
	(c)	NADH	(d)	E-FMN		
22.	Chemio	smotic hypothesis of oxidative pl	nospho	rylation requires all the following,		
	except:					
	(a)	Increase in the permeability of the	ne inne	mitochondrial membrane to ions		
	(b)	Impermeability of the inner mito				
	(c)	Intact inner mitochondrial memb	orane			
	(d)	Generation of proton gradient ac	cross in	ner mitochondrial membrane		
23.	Which o	f the following is produced more of	luring t	he cyclic photophosphorylation of		
	light reac					
	(a)	NADPH	(b)	O_2		
	(c)	ATP	(d)	All the above		
24.	In the bio	ological oxidation-reduction reac	ction, th	ne oxidised form of nicotinamide		
		linucleotide can accept:				
	(a)	One electron and one proton	(b)	One electron and two protons		
	(c)	Two electrons and one proton	(d)	Two electrons and two protons		
25.	E.coli wa	as grown for two generations in	a medi	a containing 15 Nitrogen source.		
				NA replication, the ratio of		
		¹⁴ N ¹⁵ N : ¹⁵ N ¹⁵ N will be respect		,,		
	(a)	1:1:0	(b)	0:1:1		
	(c)	1:0:1	(d)	0:0:2		
TLV	-17118					

Glucose-6- Phosphatase

[Turn over

20. Gout is caused by the deficiency of following:

HGPRT

(a)

26.	Operon	has all the following characteristics, except:			
	(a)	All genes in an operon are under the control of single promoter			
	(b)	All genes in an operon are	under the cont	rol of single transcription terminator	
	(c)			onal start and stop signals	
	(d)	The operon mRNA has n			
27.		ng will be the approx. molecular weight (in Daltons) of the peptide coded by			
		est open reading frame of e			
	CAAU	CCACCAUGGUUUACGA	AACAGACC	GUACUAAACAGAAAAAAAA-3	
	(a)	770	(b)	880	
	(c)	1320	(d)	1650	
28.	Which o	f the following protein is No	OT involved i	n DNA renair system ?	
	(a)	Uracil-N-Glycosylase	(b)	RNA Polymerase II	
	(c)	Mut S	(d)	None of the above	
29.	How man	ny linear DNA fragments vyil	ll ha abtained	if E. coli genomic DNA is digested	
		striction endonuclease, who			
	(a)	Two	ose restriction	site is present once:	
	(b)	One			
	(c)		.:111	-1	
	(d)	None, because all DNA w Unknown number	in be degrade	ea	
	(-)				
30.	Multiple	cloning site (MCS) present	in a vector is	a:	
	(a)	DNA region in a vector con	ntaining many	unique restriction endonuclease	
		sites			
	(b)	DNA region in a vector who	ere multiple ge	enes can be cloned simultaneously	
	(c)	DNA region in a vector wh	nere origin of	replication is present to make	
		multiple copies of a vector			
	(d)	DNA region in a vector wh	here selectabl	e marker gene is cloned	

31.	1. Which of the following vectors has highest DNA intake capacity?				
	(a)	Plasmid	(b)	Phagemid	
	(c)	Cosmid	(d)	Bacteriophage lambda	
				,	
32.	During l	Polymerase chain reaction, following	ng enz	yme (s) is NOT required:	
	(a)	DNA ligase	(b)	DNA helicase	
	(c)	Primase	(d)	All the above	
33.	Serum o	f the person with blood group of "A	.B"wi	ll have antibodies against antigen:	
	(a)	Both "A" and "B"	(b)	"O" and "B"	
	(c)	Only"O"	(d)	Neither "A" nor "B"	
34.	Which o	f the following cell is NOT present	in Imi	mune system ?	
	(a)	Cytotoxic T-cell	(b)	Natural Killer Cell	
	(c)	Dendritic Cell	(d)	None of the above	
35.		f the following is NOT the accurate			
	(a)	B cells are involved in respiratory	burst		
	(b)	B cells produce antibodies			
	(c)	B cells mediate humoral immunity			
	(d)	None of the above			
36.	Which of	f the following statement regarding	antibo	odies is Incorrect?	
	(a)	Antibodies cross placenta			
	(b)	Antibodies are glycosylated			
	(c)	Antibodies have disulphide bond	betwe	en light chain and heavy chain	
	(d)	None of the above			
37.	In non-re	educing SDS-PAGE, a protein afte	r elec	trophoresis showed a band of 50	
		under reducing conditions same pr			
	basis of the	his observation, the protein is comp	posed	of:	
	(a)	Homodimer covalently linked together	ether		
	(b)	Homodimer non-covalently linked	ltoget	her	
	(c)	Heterodimer of different molecular	r weig	ht subunits	
	(d)	None of the above			

88.	. Gel exclusion chromatography can be used for the following application:				
	(a)	Desalting of protein solution			
	(b)	Separation of proteins in a mi	xture		
	(c)	Studying protein-protein inter	actions		
	(d)	All the above			
39.	Protein	lissolved in pure water can be q	uantified	by using:	
	(a)	Spectrophotometry	(b)	Colorimetry	
	(c)	Both (a) and (b)	(d)	None of the above	
10.	Riboson	nes are designated as 70S or 80	S. The te	rm "S" denotes:	
	(a)	Electrophoteric property of ri	bosomes		
	(b)	Light scattering property of ri	bosomes		
	(c)	Gel exclusion chromatograph	ic propert	y of ribosomes	
	(d)	None of the above			
11.	How are	mitochondrial genes inherited	?		
	(a)	Paternally	(b)	Maternally	
	(c)	During foetal development	(d)	All the the above	
12.	Life of th	ne individuals with one of these	genetic di	sorders can be saved and improved	
		et modifications:	G	,	
	(a)	Cystic fibrosis	(b)	Down syndrome	
	(c)	Phenylketonuria	(d)	Sickle Cell anaemia	
13.	Linkage	of genes on same chromosome	e is never o	complete, because of:	
	(a)	Mutations			
	(b)	Crossing over between homo	logous ch	romosomes	
	(c)	Re-arrangement of genes on o	chromoso	mes	
	(d)	All the above			
14.	Frequen	cy of recombination between ty	vo genes v	will be highest for the map units:	
	(a)	5	(b)	7	
	(c)	10	(d)	13	
	(0)	,	(4)		

4	5. Whic	h of the following is NOT the	characteristic feature of C ₄ plants?					
	(a) Their Rubis CO enzyme	Their Rubis CO enzyme do not have oxygenase activity					
	(b	Atmospheric CO ₂ is take	Atmospheric CO ₂ is taken up by mesophyll cells which lack Rubis CO					
		enzyme						
	(c) Rubis CO enzyme is pres	Rubis CO enzyme is present in Bundle sheath cells					
	(d) Malate is transported from	n mesophyll cells to Bundle sheath cells					
			Silver Colls					
46	. Which	of the following function is N	OT stimulated by insulin hormone?					
	(a)	Blood glucose uptake by	he cells (b) Protein synthesis					
	(c)	Fatty acid synthesis	(d) Glycogen breakdown					
47.		enic Bt Brinjal is more resistar	nt to:					
	(a)	Fungal infection	(b) Bacterial infection					
	(c)	Insects	(d) Viral infection					
10	D 1							
48.	Decarbo	oxylation product of the followi	ng amino acid acts as inhibitory neurotransmitter					
		al nervous system:						
	(a)	Glutamate	(b) Tyrosine					
	(c)	Trytophan	(d) Glycine					
40	P - 111							
49.	E. coli is		4					
	(a)	Obligate aerobe	(b) Facultative anaerobe					
	(c)	Obligate anaerobe	(d) None of above					
50.	Co	1- 11 1						
50.	Common	lly used Amoxicillin drug conta	ins antibiotic which kills bacteria by inhibiting:					
	(a)	Cell wall formation	(b) Protein Translation					
	(c)	DNA replication	(d) mRNA synthesis					
51.	Posts.							
31.		can acquire antibiotic resistan	ce by:					
	(a)	Mutation	(b) Insertion of transposon					
	(c)	Acquiring plasmid	(d) All the above					

	(a)	Gas vacoule	(b)	Magnetosomes		
	(c)	Carboxysome	(d)	None of the above		
53.	To prevent blindness in persons who consume methanol, the patients are given					
	intraveno	ous infusion of ethanol. What is the				
	(a)	Ethanol reacts with methanol and				
	(b)	Ethanol competes with methanol	for bir	nding the substrate binding site of		
		alcohol dehydrogenase				
	(c)	Ethanol acts an uncompetitive inh	ibitor	of alcohol dehydrogenase		
	(d)	All the above				
54.	The typi	cal saturation curve for an enzym	e cata	lysed reaction is sigmoidal. This		
		that the enzyme is:		.•		
	(a)	Regulatory enzyme	(b)	Non regulatory enzyme		
	(c)	Both (a) & (b)	(d)	None of the above		
55.	A compe	etitive inhibitor of an enzyme:				
	(a)	Increases Km without effecting V	max			
	(b)	Decreases Km without effecting	Vmax			
	(c)	Increases Vmax without effecting	gKm			
	(d)	Decreases Vmax without effectir	ıg Km	1		
56.	Among	the following which is the wrong pa	air?			
	(a)	Transferase-Kinase	(b)	Lyase-decarboxylase		
	(c)	Hydrolase-pepsin	(d)	Oxidoreductase-epimerase		
57.	A loss o	f function mutation in gene was repo	orted t	o be associated with tumorogenesis.		
	What co	ould be the most probable function	of the	e protein?		
	(a)	Oncogene	(b)	Proto-oncogene		
	(c)	Tumor suppressor	(d)	Both (a) & (b)		
TL	V-17118			10		

52. Which of the following is NOT present in bacteria?

BIOTECHNOLOGY - 2010

M.Sc. Biotechnole

1.	16 is repr	resented in the bin	ary system as:				
	(a)	10001		(b)	10000		
	(c)	01011		(d)	10100		
2.	One liter	of milk will weigh	:				
	(a)	Equal to one Kg	of water				
	(b)	Less than one K	g of water				
	(c)	More than one K	g of water				
	(d)	There is no relati	ion between the	two			
3.	Which o	f the following nuc	lei will have a n	nagnetic	moment?		
	(a)	16O 8		(b)	$^{2}D_{1}$		
	(c)	¹² C ₆		(d)	³² S ₁₆		
4.	If equal v	olumes of solid, lie	quid or vapour s	tate of w	vater is filled in thermos. Molecules		
	of which	state of matter wil	Il possess maxin	num m	ean kinetic energy:		
	(a)	Solid		(b)	Liquid		
	(c)	Vapour		(d)	All will have same		
5.	A closed	l system is the one	which:				
	(a)	Exchanges energ	gy but not matte	r with s	urroundings		
	(b)	Exchanges neith	er matter nor er	nergy wi	ith surroundings		
	(c)	Exchanges both	energy and mat	ter with	surroundings		
	(d)	Exchanges matte	er but not energ	y with s	surroundings		
6.	High spe	ecific heat of water	r is useful to cel	ls beca	use:		
	(a) It increases the buffering capacity of water						
	(b)	(b) It helps it to keep the cell environment warm					
	(c)						
	(d)	It makes it a goo	od heat buffer				
7.	Overnight burning of a domestic gas heater in a poorly ventilated room resulted in						
		a person. What c					
	(a)	Release of poise	ons gaseous	(b)	Depletion of oxygen		
	(c)	Overheating		(d)	Dehydration		
8.	For spontaneous chemical reactions, which of the following is incorrect?						
	(a)	1220		(b)	Change in enthalpy is negative		
	(c)				None of the above		

	(a)	The properties associated with	the solu	te				
	(b)	Weak water-water interaction						
	(c)	The properties associated with	water					
	(d)	Strong solute-solute interaction	n					
10.	During r	melting of ice into water:						
	(a)	Enthalpy change is negative	(b)	Entropy change is positive				
	(c)	Both (a) and (b)	(d)	None of above				
11.	Two unc	charged atoms close to each other	er can sta	bilize due to :				
	(a)	Hydrogen bonds	(b)	Ionic bonds				
	(c)	Hydrophobic force	(d)	Van der Walls force				
12.	Dielectr	ic constant of formamide, water	r, ethano	and benzene is 110.0, 78.5, 24.3				
				vents force between two electric				
		will be highest?						
	(a)	Formamide	(b)	Water				
	(c)	Ethanol	(d)	Benzene				
13.	Molarity	of 1 liter of pure water at 25°C	is:					
	(a)	55.5 M	(b)	18 M				
	(c)	25 M	(d)	10 M				
14.	If equal	amount of NaCl and glucose ar	e added	to water, which of the above will				
	affect the	e colligative property of water m	ore?					
	(a)	NaCl	(b)	Glucose				
	(c)	Both will affect equally	(d)	None of above				
15.	Which o	f the following is an incorrect sta	tement?					
	(a)	Chemical synthesis of chiral me	olecules	produces racemic mixtures				
	(b)	Biosynthesis of chiral molecul	es produ	ces a pure stereoisomers				
	(c)	All amino acids have asymmet	ric center	rs.				
	(d)	Chiral molecules are non-super	rimposib	le mirror îmages				
16.	Sucrose	doesn't exist in its anomeric form	while it	s hydrolyzed products glucose and				
	fructose	have anomers. The reason is:						
	(a)	C1 of glucose and C1 of fructo	se are bo	onded in glycosidic linkage				
	(b)	C1 of glucose and C2 of fructose are bonded in glycosidic linkage						
	(c)							

9. Molecules dissolve in water because of:

(d) Both (b) and (c)

17.	Which of	the following is likely to obey	Charagafl	l's rule?			
	(a)	Double stranded RNA	(b)	Single stranded RNA			
	(c)	Single-stranded DNA	(d)	None of above			
18.	Which of	the following does not posse	ss nucleic a	acids?			
	(a)	Ribozyme	(b)	Ribosomes			
	(c)	Nucleosomes	(d)	None of above			
19.	De-meth	ylated thymine is:					
	(a)	Cytosine	(b)	Uracil			
	(c)	Hypoxanthine	(d)	Xanthine			
20.	Which o	f the following is correct regar	ding type-	II restriction endonucleases?			
	(a)	Both endonuclease and methodecule	nylase activ	vities are present on single protein			
	(b)	They cleave DNA at specific	sites with	in the recognition sequence			
	(c)	They cleave DNA at a site located 1000 the bp away from recognition sequence					
	(d)	They cleave DNA at site loo	cated 24 to	26 bp away from recognition site			
21.	Which o	f the following is not a cloning	vector?				
	(a)	Bacteriophages	(b)	Phagemids			
	(c)	E.coli	(d)	Bacterial artifical chromosomes			
22.	Which of the following technique is NOT linked with nucleic acids?						
	(a)	Western Blotting	(b)				
	(c)	Southern blotting	(d)	Northern blotting			
23.	Purifyin	g mRNA using oligo dT tagge	d column c	hromatography is an example of:			
	(a)	Molecular sieve chromatogr	aphy				
	140	Ion-exchange chromatography					
	(c)	Affinity chromatography					
	(d)	High performance liquid chr	omatograp	bhy			
24.	In gel electrophoresis, molecular separation is based on:						
		Gel sieving effect					
		Electrophoretic mobility of r	nolecules				
	1,71	Both (a) and (b)					
	(d)	None of above					

	(c)	To give equal charge to proteins	(d)	Both (b) and (c)					
26.	Which o	f the following is NOT true regard	ing pe	ptide bond?					
	(a)								
	(b)	Peptide bond has partial double bond characteristics							
	(c)								
	(d)	Peptide bond is a pure single bor	nd						
27.	Which of the following forces significantly contribute to the structure of proteins?								
	(a)	Ionic interactions	(b)	Van der Walls interactions					
	(c)	Hydrogen bonding interactions	(d)	None of above	4.				
28.	During	During diarrhea, glucose is recommended to be given orally as opposed to							
	intraven	ously, because:							
	(a)	Glucose needs to be digested							
	(b)	To enhance the secretion of diges	stive e	nzymes					
	(c)	To enhance resorption of Na ⁺ from	m inte	estine					
	(d)	All the above							
29.	Blood cells placed in water will have following fate:								
	(a)	Will become functionally more ac	ctive						
	(b)	Will lose water and shrink							
	(c)	Will have no effect							
	(d)	Will imbibe water and will lyse							
30.	Clones are:								
		Genotypically and phenotypically							
	(b)	Phenotypically but not genotypically similar							
	(c)	Genotypically but not phenotypically similar							
	(d)	None of the above							
31.	Which of the following ion plays important role in the excocytosis of synaptic vesicles								
		aptic cleft?		227					
	(a)	Ca ²⁺	(b)						
	(c)	K*	(d)	Both (b) and (c)					
32.		tflow of K+ ions from a neuron is in							
	(a)	Depolarization		Hyperpolarization					
	(c)	No effect	(d)	None of above					
EL	W-6738			5		[Turn over			

(b) To denature protein

β-mercapto-ethanol in SDS-PAGE is used:
 (a) To reduce di-sulphide bonds

	(a)	Removing O, from their photosyr	thetic	cells			
	(b)	Removing CO ₂ from their photosynthetic cells					
	(c)	By concentrating CO ₂ in their photosynthetic cells					
	(d)	By concentrating O ₂ in their photo	osynth	etic cells			
34.	Metabol	ic fate of pyruvate is ;					
	(a)	Lactate	(b)	Acetyl CoA			
	(c)	Ethanol	(d)	All of the above			
35.	Expressi	ing more LDL receptors on the cell	meml	orane will prevent:			
	(a)	Hypocholesterolemia	(b)	Hypercholesterolemia			
	(c)	Excess of triglycerides in blood	(d)	Septicemia			
36.	During p	orolonged starvation, brain's energy	requi	rements are mainly met by:			
	(a)	Glucose					
	(b)	Proteins					
	(c)	Fatty acids					
	(d)	Acetoacetate and β-hydroxbutyr	rate				
37.	Derivati	ve of following amino acid is used	to cur	e Parkinson's disease:			
	(a)	Glutamate	(b)	Tryptophan			
	(c)	Tyrosine	(d)	Histidine			
38.	C-value	paradox suggests us about :					
	(a)	Colinearity between genome size and complexity of organism					
	(b)	No-colinearity between genome size and complexity of organism					
	(c)	Dosage compensation					
	(d)	Number of chromosomes					
39.	If the K	of enzyme for substrate A is 1	× 10-6	and for substrate B is 4 × 10 ⁻⁸ , it			
	means:						
	(a)	Enzyme has more affinity for substrate A than substrate B					
	(b)	Enzyme has equal affinity for substrate A and substrate B					
	(c)	Enzyme is non-specific					
	(d)	Enzyme has more affinity for sub	ostrate	B than substrate A			
40.	Which	of the following vitamins is NOT a	co-enz	ryme precursor?			
	(a)	Pyridoxine	(b)	Biotin			
	(c)	Pantothenate	(d)	Vitamin A			
FIL	1) (720			7			

33. C₄ plants prevent photorespiration by:

	(a)	umans is: Homologous recombination	(b)	Non-homologous recombination			
	(c)	and the same of th	(d)	Transposition			
	(c)	Widdions	(4)	Transposition			
2.	Exception to the concept of central dogma of genetic information flow is:						
	(a)	DNA viruses	(b)	RNA viruses			
	(c)	Both (a) and (b)	(d)	None of above			
3.	During I	During DNA replication, hydroxyl group at the 3' end of primer attacks the :					
	(a) Glycosidic bond of incoming nucleotide						
	(b)	(b) β-phosphate of incoming nucleotide					
	(c)						
	(d)	α-phosphate of incoming nucle	otide				
4.	Which o	f the following statement regardi	ng prom	noters is incorrect?			
	(a)						
	(b)	(b) Promoters is a DNA sequence which binds RNA polymerase					
	(c)	Promoters are orientation depe	ndent				
	(d)	None of above					
5.	Which	Which of the following DNA polymerase lacks 3' to 5' exonuclease activity?					
	(a)	DNA Pol I	(b)	Taq DNA Pol			
	(c)	DNA Pol III	(d)	Klenow fragment			
6.	Telomer	ase is NOT present in:					
	(a)	Somatic cells	(b)	Germ cells			
	(c)	Embryonic stem cells	(d)	Cancer cells			
7.	Among	the following choose the wrong c	ombinat	ion:			
	(a) 16S rRNA, 23S rRNA, Shine-Dalgarno sequence, 50S ribosomal subunit						
	(b)	(b) 5.8S rRNA, Kozak sequence, eIF4E, 40S ribosomal subunit					
	(c)						
	(d)	Poly A tail, 18S rRNA, N-form	nyl meth	nionine tRNA, Kozak sequence			
8.	mRNA of 500 nucleotides with open reading frame of 400 nucleotides will code for						
	a proteir	a protein having approx. molecular weight of:					
	(a)	14.6 kDa	(b)	10.33 kDa			
				22.6 kDa			

49.	Hypertrichosis, hairiness of the pinna of the ear, is inherited as a Y-linked recessive in						
	humans. If a man with hypertrichosis marries a normal woman, what types of children						
	may they	have?		17.10.00			
	(a)	All of their children of both	sexes have h	ypertricnosis			
	(b) All the sons have hypertrichosis, but none of their daughters						
	(c)	(c) Half of their sons, but none of their daughters will have hypertrichosis					
	(d)	None of their children have	hypertricnos	als.			
50.	The most rapid method to resynthesize ATP during exercise is through:						
TICKE!		Glycolysis	(b)	Phosphocreatine breakdown			
		Glycogenolysis	(d)	TCA cycle			
51	Whicho	f the following is NOT the s	teroid hormo	ne?			
		Estrodiol	(b)	Glucocorticoids			
	(c)	A STATE OF THE PARTY OF THE PAR	(d)	None of above			
52.	Which o	f the following is an oncoge	ne?				
700		c-jun	(b)	c-myc			
	(c)	v-fos	(d)	All the above			
53.	Which	of the following is NOT a se	condary mess	senger?			
		Diacylglycerol	(b)	Phospholipase C			
	(c)	Ca ²⁺	(d)	Inositol triphosphate			
54.	Ramachandran explained the possibility of the protein structure on the basis of:						
	(a)	Inductive effect	(b)	Endomeric effect			
	(c)	Steric hindrance	(d)	All of the above			
55.	Which	of the following represents th	ne nullisomic	and trisomic condition?			
	(a)		(b)	2n-2, $2n+1$			
	(c)	2n-1, $2n+1$	(d)	2n-2, 2n+2			
56	. HIV-th	ne human immunodeficiend	cy virus belor	ngs to which of the following viral			
	groups	?					
	(a)			Retroviruses			
	(c)	Rhabdoviruses	(d)	None of the above			
57	. Which	of the following is multimer					
	(a)		(b)				
	(c)	lgA	(d)	None of above			

C (1)	CONTRACTOR OF	CONTRACTOR SECTION AND ADDRESS OF COMME	
58.	(I) R A	etermines the	
201	CDICU	ctermines the	

- (a) Antibody specificity
- (b) Antibody structure
- (c) Shape of the antigen
- (d) It is an unrelated term

59. Cobalamin is a vitamin synthesized by:

- (a) Animals only
- (b) Plants only
- (c) Both animals and plants
- (d) Bacteria

60. How many grams of glucose are required to make 2 ml of 10% glucose solution?

(a) 38 g

(b) 2.0 g

(c) 1.5 g

(d) 0.5 g

BIO-TEGHNOLOGY 2006

Note:-Attempt 70 questions in all.

- 1. Section A is compulsory for all comprising 1-30 questions.
- 2. Section B is for Medical Stream comprising 31-70 questions.
- 3. Section C i for Non-medical Stream comprising 31-70 questions.

Section A' compulsory for all candidates

However candidates shall exercise their option to attempt questions either from section B or Section C.

The relevant box as given below has essentially to be tick-marked by a candidate that the question paper is evaluated as per the option offered by him/her, otherwise the question paper shall render redundant.

Section B (Medical Stream)

Section C (Non-medical Stream)

Section A

- 1. Which of the following is *not* a computer language?
- (a) PASCAL
- (b) COBOL
- (c) LOTUS
- (d) BASIC
- 2. Decimal equivalent of binary number 1010 is
- (a) 2
- (b) 10
- (c) 13
- (d) 16
- 3. Which of the following is *not* a storage device?
- (a) Floppy
- (b) Hard disk
- (c) Register
- (d) ROM
- 4. Dimensions of moment of inertia are
- (a) ML2T
- (b) MOLoTl
- (c) M2LT
- (d) MOLT2
- 5. Four resistors each of value. 4 ohm is connected as shown in figure. The equivalent resistance between points A and B is':

(a) 10hm (b) 3 ohm (c) 4 ohm (d) 16 ohm
6. An air bubble under water shines brightly because of the phenomenon of:(a) dispersion(b) interference(c) diffraction(d) total internal reflection
 7. Balmer series in hydrogen ga~ spectrum is emitted when electro higher orbits to the: (a) first orbit (b) second orbit (c) third orbit (d) fourth orbit
8. The maximum height attained by a projectile equals its horizontal range. The angle with the horizontal with which it was projected is: (a) tan-1 1 (b) tan-1 2 (c) tan-1 3 (d) tan -1 4 9. In a spherical bubble of radius R, the excess pressure is:
10. Which of the g the biggest ion? (a) Al3+ (b) Ba2+ (c) Mg2+ (d) Na+
11. Conditions that will favour the exo e ic ammonia synthesis reaction: N2(g) + 3H2(g) === 2. aI3(g) (a) high temperature and high pressure (b) high temperature and low pressure (c) low temperature and high pressure (d) low temperature and low pressure
. 12. Which one of the following is blue vitriol? (a) CuS04·7H2O (b) CuS04·5H2O

(c) FeS0 ₄ ·7H2O
(d) ZnS04·7H2O 13. pH of 10-3 M HCI is : (a) 2 (b) 3 (c) 4 (d) 11
14. An alcohol is formed when nitrous acid reacts with: (a) CH3NH2 (b) (CH3)2NH (c) CH3NHC2Hs (d) (CH3)3N
15. The edible part of the fruit apple is :(a) peduncle(b) thalamus(c) pericarp(d) embryo
16. The F2 ratio resulting from a dihybrid cross will be: (a) 9:3:3:1 (b) 1:1 (c) 3:1 (d) 1:1:11
17. Application of gibberellic acid induces flowering in(a) long day plants(b) short day plants(c) both (a), (b)(d) neither of the two
18. The chief nitrogenous waste in human is(a) urea(b) ammonia(c) , uric acid(d) ammonium nitrate
19. Fluid mosaic mode of biological membranes was given by(a) Robert on(b) Danielli and Davison(c) inger and icolson(d) Gorter and Grendel
20. Phyllum Annelida includes(a) unsegmented triploblastic coelomates

(b) unsegmented triploblastic acoelomates(c) segmented triploblastic coelomates(d) segmented triploblastic acoelomates
21. Which of the following is <i>not</i> correct? (a) sucrose is a carbohydrate, (b) ribonuclease is an enzyme (c) phosphorus is a component of DNA (d) anticodon is present on <i>rRNA</i>
22. The correct taxonomic hierarchy is reflected in :(a) phylum, class, order and family(b) kingdom, family, class and order(c) kingdom, family, order and class(d) kingdom, class, species and genus
23. The soil type with the poor water holding capacity is(a) silty(b) loamy(c) clay(d) sandy
24. The missing term in the series 2, 3, 5,, 12 is: (a) 7 (b) 8 (c) 9 (d) 11
25. In a certain language WORK is coded as 4567 and MAN as 328, then in that Language WOMAN is coded as : (a) 43528 (b) 82354 (c) 32845 (d) 45328
26. sin2 38° + cos2 38° = ? (a)1/2 (b) 3.32 (c) 1 (d)1/3

27. In a right-angled triangle, the sides perpendicular to each other are 15 cm and 8 em. Its perimeter is:

- (a) 46 em
- (b) 60 em
- (c) 120 em
- (d) 40 em

28. A alone completes a piece of work " days. If A and B work together the same work can be completed in 6 day. In how many days can B alone complete that work? (a) 24 (b) 12 (c) 7 (d) 5
29. The critical temperarure a which an unsaturated air becomes saturated is called:(a) dew point(b) frost(c) condensaation(d) absolute humidity
30. In the SARS (a) and (b) acute (c) asthma (d) anti
Section B
31. The uncertainty in the velocity of a ball of mass 100 g when its uncertainty in position is 1 Å is : (a) $3.24 * 10-24$ mls (b) $5.23 * 10-24$ (c) $6.14 * 10-12$ mls (d) $10-12$
32. Which of the following favours the pontaneity of change? (a) ~H is - ve (b) ~S is + ve (c) ~G is -ve (d) All of the above
33. EOfor a cell Zn $IZn2+(aq)IICu2+(aqIC)$ O is 1.10 V at 25°C. The equilibrium constant for the reaction $Zn+Cu2+(aq)=Cu+Zn2+(aq)$ is of the order of : (a) $10-28$ (b) $10-37$ (c) 1018 (d) 1017
34. "In a given photochemical reaction, each molecule of a reaction absorbs only one quantum of radiation causing the particular reaction." It is a statement of : (a) Stark-Einstein law

(b) Lambert-Beer's law(c) Grothus-Draper law(d) None of the above
 35. The decreasing order of stability of carbonium ions is given by (a) tertiary > primary > secondary (b) primary > secondary > tertiary (c) tertiary > secondary > primary (d) secondary > primary > tertiary
36. Glucose on warming with excess of phenyl hydrazine forms a yellow crystalline compound called : (a) fructose (b) glucosone (c) glucosazone (d) arabino e
37. The following reaction is an example of: C ₆ H ₆ CHO KOH/100 degree C ₆ H ₆ COO-K+C ₆ H ₅ CH ₂ OH (a) Perkin reaction (b) Witting reaction (c) Aldol condensation (d Cannizaro reaction
38. Which of the following metal ions is green coloured?
40. XeF2 invol re ybridization (a) $sp3d$ (b) $dsp2$ (c) $sp3d2$ (d) $sp2$
41. African sleeping sickness is caused by : (a) Giardia (b) Trypanosome (c) Trichomonas (d) Leishmania
42. The major immunoglobin in normal human serum IS (a) IgG (b) . IgM (c) IgD (d) IgE
43. Which of the following <i>does not</i> secrete silk?(a) Bombyx mori(b) Apis indica

(c) Attacus atlas (d) Apis indica
 44. Which of the following is meant for reproduction in <i>Taenia solium</i>? (a) Scolex (b) Strobila (c) Rostellum (d) None of the above
45. The diploid number of an organism is 12. Number of chromosomes expected to be in monosomic is (a) 11 (b) 10 (c) 9 (d) 13
46. Modern horse is (a) Pliohippus (b) Equs (c) Merychippus (d) Mesohippus
 47. Loss of water as drops of liquid from the surface of plant is called: (a) Transpira tion • (b) Evaporation (c) . Guttation (d) Condensation
48. The main body of ovule is called: (a) nucellus (b) integument (c) embryo sac (d) micropyle
 49. In pinus, each sporophyll of male cone has (a) one sporangia (b) two sporangia (c) four sporangia (d) eight sporangia
50. Tropopause eparates troposphere from:(a) Strate phere(b) Meso phere(c) Thermosphere(d) Exosphere
51. "Growth is dependent on amount of food-stuff that is present in- minimum quantity" is a statement of :

(a) Shelford's law(b) Liebig's law(c) Vant Hoffs law(d) None of the above
52. Which of the following is lotic system? (a) lake (b) pond- (c) marshes (d) stream
53. The most mono-unsaturated fatty acids have double bond between: (a) C-8 and C-9 (b) C-9 and C-10 (c) C-1O and C-11 (d) C-12 and C-13
54. Which of the following is sulfur containing amino acid?(a) Leucine(b) Tyrosine(c) Serine(d) None of the above
55. The enzyme that moves along the DNA and separates the strands is (a) prnnase (b) helicase (c) topoisomerase (d) ligase
56. When the base composition of DNA from bacterium Mycobacterium tuberculosis was determined, 18% of the bases were found to be adenine. What is the $[G] + [C]$ content? (a) 18% (b) 32% (c) 36% (d) 64%
57. Red algae differ from the green algae and brown algae in having (a) no chlorophylla • (b no differentiated cells

- 58. Oxy en content reduction makes the glycolyse(glycogenesis)intensity increased due
- (a) increase of ADP concentration in cell
- (b) increase of ...~AD+concentration in cell
- (c) increa e OATP concentration in cell

c) no phycocyanin within their cells d) no flagellated stages in their life cycles

(d) increase of concentration of peroxides and free radicals

- 59. A bacterial m-R A ith a length of 360 nucleotides in length codes for a proteirr of :
- (a) roughly 360 amino acids
- (b) roughly 1080 amino acids
- (c) exactly 120 amino acids
- (d) less than 120 amino acid
- 60. Nitrogen is fixed in ecosystems in ways stated below. One of the statements below is false. Which one?
- (a) by cyanobacteria
- (b) by electrical discharges in the atmosphere
- (c) by industrially synthesized fertilizer
- (d) by denitrification
- 61. When sunlight is on the chloroplast, pH is the lowest in the
- (a) stroma
- (b) cytosol
- (c) space enclosed by the thylakoid membranes
- (d) space enclosed by the inner and outer membranes
- 62. Tissues that form long, tough stands, as in the leaf stalk of celery, are
- (a) epidermis
- (b) collenchyma
- (c) sclerenchyma
- (d) parenchyma
- 63. Which reactions are made with the help of the system of giant axons? slow differential reactions
- 64. In the blood of an adult man the total content of haemoglobin is, roughly:
- (a) several hundred gram
- (b) tens of gram (10-100 g)
- (c) several gram
- (d) several hundred milligram
- 65. A mollusc sample is given to a biologist. After examining the sample he says that it belongs to Bivalvia. Which of the following may be the key that makes him to reach this conclusion?
- (a) gills
- (b) absence of radula
- (c) body symmetry
- (d) mantle
- 66. When a muscle cell ha a shortage of oxygen this is associated with a change in pH. What substance is responsible for this change in pH?
- (a) decreased carbon dioxide
- (b) decreased lactate (lactic acid)

- (c) increased carbon dioxide.
- (d) increased lactate (lactic acid)
- 67. Which one of the following pairs is *correctly* matched?
- a)chloroplast-storage of enzymes •
- b)peroxisomes-cellular transportation
- c)nucleolus-site 'of ribosomal subunit synthesis
- d)lysosomes-power house of cell
- 68. The belonging of a human erythrocyte to serotypes A, B, 0 is determined by chemical markers on its surface. These markers are
- a. lipid molecules
- b. oligosaccharides
- c. polypeptides
- d. antibodies
- 69. C4-plants can start photo ynthesis with a lower concentration of CO₂ in the atmosphere than C3-plants. This is because:
- a) respiration of C4-plants is higher
- b).respiration of C4-plants is lower
- c) C₄ plants do not have photorespiration
- d) C4-plants have photorespiration
- 70. the most important factor regulating seasonal migration is
- a) the change in average air temperature
- b) the change in day length
- c) the reduced availability of food
- d) the increased predator pressure

Section C

- 31. Current flow in semiconductor depends on the phenomenon of:
- (a) drift
- (b) diffusion
- (c) recombination
- (d) All of the above
- 32. A transistor connected in common base configuration has
- (a) a low input resistance and high output resistance
- (b) a high input resistance and low output resistance
- (c) a low input resistance and low output resistance
- (d) a high input resistance and high output resistance
- 33. The Q-point in voltage amplifier is selected in the middle of active region because:
- (a) it gives distortionless output
- (b) the operating point becomes very stable

- (c) the current then requires less number of re i tors (d) it then requires a small d.c. voltage 34. Tuned voltage amplifiers are *not* used (a) in public addre s system
- (b) in radio receivers
- (c) where a band of frequencies is to be selected and amplified
- (d) in television receivers
- 35. In AMtransmission with m = 1, suppression of carrier cuts power dissipation by a factor of :
- (a) 6
- (b) 2
- (c) 3
- (d) 4
- 36. One of the serious disadvan ages of FM transmission is its
- (a) high static no' e
- (b) limited line-of- ight range
- (c) expensive equipment
- (d) adjacen channel interference
- 37. An XOR gate produces an output only when its two inputs are
- (a) high
- (b) low
- (c) different
- (d) same
- 38. A half adder can be constructed from
- (a) two XNOR gates only
- (b) one XOR and one OR gate with their outputs connected in parallel
- (c) one XOR and one OR gate with their inputs connected in parallel
- (d) one XOR gate and one NOR gate
- 39. A blocking oscillator:
- (a) is a triggered oscillator
- (b) 1 an amplifier with negative feedback
- (c) generates sinusoidal waves
- (d) produce sharp and narrow pulses
- 40. A relaxation o cillater is one which
- (a) ha two able states
- (b) relaxes inde .tel
- (c) produce non- inu oidal output
- (d) oscillates continuously
- 41. Binary equivalent of octal number 527 is
- (a) 101010111
- (b) 111011010
- (c) 101010101

(d) 111000110
42. Intel 8085 is an: (a) 4-bit microprocessor (b) 8-bit microprocessor (c) 16-bit microprocessor (d) 64-bit microprocessor
 43 Which of the following languages is sui able for artificial intelligence ? (a) ALGOL (b) PASCAL (c) PROLOG (d) PILOT
44. A conventional electric current flows d e east in a high voltage power line. What would be the direction of the resulting magnetic field directly below the power line? - (a) north (b) east (c) south (d) west
 45. An electron travels so that its total energy is twice its rest energy (0.511MeV). What is the speed of the electron? (a) V=1/2c (b) B) v=3/4c (c) C) 3/2c (d) D) 8/9c
46. An object is placed 60 cm from a convex converging lens. The image produced is inverted and half the size of the object. What would be focal length of the lens? $\{a\}$ 90 cm (b) 60 cm (c) 45 cm (d) 20 c
47. An ide eat engine takes in heat energy at a high temperature and exhausts energy at a lower temperature. If the amount of energy exhausted at the 10 temperature is 3 times the amount of work done by the heat engine, what efficiency? a) 0.25 b) 0.33 c) 0.67 d) 0.9

48. Consider a simple circuit containing a battery and three light bulbs. Bulb parallel with bulb B and this combination is wired in series at would happen to the brightness of the other two

bulbs if bulb A were burn out?

 a) Only bulb B would get brighter b) Both would get brighter c) Bulb B would get brighter and bulb C would get dimmer d) Bulb B would get dimmer and bulb C would get brighter
49. The root mean square velocity of oxygen gas (atomic mass 16) is <i>v</i> at room temperature. The root mean square velocity of Helium (atomic mass 4) at the same temperature is : (a 4v (b 2v (b) v (d) v/2
50. An object is projected straight upward from ground level with a velocity of 50 m/s. Ignoring air resistance, it will return to ground level in approximately (a) 2.5 s (b) 5.0 s (c) 7.5 s (d) 10 s
51. The eccentricity of the ellipse $16x^2 + 7y^2 = 112$ is (a) $4/3$ (b) $7/16$ © $3/7$ (e) $3/4$
 52. If a + b + c = 0, then the quadratic equation 3ax2 + 2bx + c = 0 has (a) At least one root in (0 1) (b) One root in [1 2] and other in (-1, 0) (c) Both roots are imaginary (d) None of the above
53. The value of \mathbf{f} 1 $x \mid x \mid dx$ is (a) $2/3$ (b) 1 (c) 0 (d) 2
54. If A and B are an <i>two</i> non-singular matrices of the same order, then: (a) Adj(AB) = (AdjA) (AdjB)
(b) Adj(AB) = (AdjB) (AdjA) (c) Adj(Ad·A. = A (d) one 0 he above
55. The func 'on f defined on R by f when f is rational

= 1 - x, when x is irrational r; ontinuous for all x, except at: $_{\rm X} =$ x = 1c.r = 0 and x = -1(d =56. The - 1z - 41 < 1z - 21, represents the region given by : 0 a) ReZ > 0b) ReZ < 0c) ReZ > 2d) None of the above 57. If = 0(x, y) = (0, b) then at gill: (a) fX) = (b) $fxy \sim$ (c). fxy = 0(d) fyx = 058. The polynomial equation $10Z_5 + 8Z_4 + 6Z_3 + 4Z_2 + 2Z + 1 = 0$ has all roots In: (a) IZ I S 1 . (b) $I Z I \sim 1$ (c) 1 S I Z I S 10 (d) None of the above 60. For negative skewed distribution: (a) mean = median < mode (b) median < mean < mode (c) mean < median < mode (d) mode < mean < media 61. The uncertainty in the velocity of a ball of mass 100 g when its uncertainty in position is 1 A is: (a) 3.24 * 10-24 *mls* (b) 5.23 * 10-24 (c) 6.14 * 10-12 m/s (d) 10-12 62. Which of the following favours the spontaneity of change? (a) ~H is - ve (b) \sim S is + ve (c), ~G is - ve (d) All of the above

63. EOfor a cell Zn I Zn2+(aq)\lCu2+(aq I)Cu is 1.10 V at 25°C. constant for the reaction Zn + Cu2+(aq) === Cu + Zn2+(aq) is of the order of : (a) 10-2 (b) 10-37 (c) 1018 (d) 1017
 64. "In a given photochemical reaction, each molecule of a reaction absorbs only one quantum or radiation causing that particular reaction." It is a statement of: (a) Stark-Einstein law (b) Lambert-Beer's law (c) Grottus-Draper law (d) None of the above
 65. The decreasing order of stability of carbonium ions is given by (a) tertiary > primary' > secondary (b) primary > secondary > tertiary (c) tertiary > secondary > primary (d) secondary > primary > tertiary
66. Glucose on warming with excess of phenylhydrazine forms a yellow crystalline compound called (a) fructose (b) glucosone (c) glucosazone (d) arabinose
67. The following reaction is an example of C6H6CHO KOH/100 C6H5COO-K+C6H5CH2OH (a) Perkin reaction (b) Wittig reaction (c) Aldol condensation (d) Cannizaro reaction
68. Which of the following metal ions is green co cured? (a) Cr3+ (b) Cu2+ (c) Zn2+ (d) Ti4+
 69. Deficiency of which of the following cau e anemia (a). Molybdenum (b) Cobalt (c). Chromium (d) Tin
70. XeF 2 involves hybridization (a) <i>sp3d</i>

(b) *dsp2*

(c) *sp3d*,2

(d) sp2

Bio. Tech. 24

BIO-TEGHNOLOGY 2007

Section A

- 1. Two bullets are fired horizontally with different velocities from the same height. Which will reach the ground first?
- (a) Slower one
- (b) Faster one
- (c) Both will reach simultaneously
- (d) Cannot be predicted
- 2. Two bodies A and B of equal mass have an elastic collision. Initially B is at rest and A moves with velocity V. After the collision:
- (a) The body A traces its path back with same speed
- (b) The body A comes to rest and B moves away in the direction of A's approach with the velocity \boldsymbol{V}
- (c) The body A comes to rest and B moves away in the direction of A's approach with the velocity 2V
- (d) Both the bodies stick and are at rest
- 3. A cycle tyre bursts suddenly. This represents an
- (a) Isothermal process
- (b) Isobaric process
- (c) Isochoric process
- (d) Adiabetic process
- 4. As one penetrates a uniformly charged metallic sphere, the electric field strength E:
- (a) Increases
- (b) Decreases
- (c) Remains the same at the surface
- (d) Is zero at all points?
- 5. If a power of 100 W is being supplied across a potential difference of 200 V, the current flowing is
- (a) 2 A
- (b) 0.5 A
- (c) 1 A
- (d) 20 A

6. Number of unpaired electro~s in N2+ is: (a) 2 (b) 0 (c) 1 (d) 3
7. Hybridisation in 802 is : (a) <i>sp</i> (b) <i>sp2</i> (c) <i>sp3</i> (d) <i>sp3d</i>
8. Which of the following is the weakest base ? (a) NaOH (b) Ca(OH)2 (c) KOH (d) Zn(OH)2
9. Which of the following behaves both as electrophile and a nucleophile? (a) CH3NH2 (b) CH3Cl (c) CH3CN (d) CH30H
10. Aspirin is:(a) Anti-inflammatory(b) Analgesic.(c) Anticoagulant(d) All of the above
11. Life supporting zone of earth is:(a) Ecosystem(b) Ecosphere(c) Hydrosphere(d) Lithosphere
12. Insulin may be used as a therapy in(a) Type I Diabetes(b) Type II Diabetes(c) Both type I and type II Diabetes(d) Gout
13. A food product rich in fructose is:(a) Table sugar(b) Honey(c) Turnip(d) Grapes

14. Global warming is caused by: (a) CO2 (b) CH₄ (c) 03(d) All of the above 15. CPR is: (a) an imaging technique commonly used in clinical diagnosis (b) a physical exercise aimed at restoring heart beat (c) a device that records sound wave data (d) a ratio of calcium and phosphorous in serum 16. Athlete's foot is a condition caused by: (a) Ringworm infection (b) Sweat gland abnormality (c) Muscular injury (d) All of the above 17. Bovine spongiform encephalopathy (BSE) is caused by. (a) Severe viral infection (b) Septicemia (c) Tapeworm infection (d) Abnormal protein production 18. The sound we hear during cracking of knuchles is due to (a) Grinding of the upper and lower part of the joint (b) Burst of muscular contraction and relaxation (c) Release of gas from the fluid surrounding the joint (d) None of the above 19. Decimal equivalent of binary number 1010 is (a) 2 (b) 4 (c) 8 (d) 10 20. Which of the following is a part of computer hardware? (a) Bus (b) Register

(c) RAM

Section B

(a) 45 (b) 40 (c) 35

(d) All of the above Biotechnology 4

21. The median of scores 25, 45, 35, 35, 40, 30 is:

(d) 30
22. What is the probability that a value chosen at random from a particular population is larger than the median of the population: (a) 0.25 (b) 0.5 (c) 1.0 (d) 0.67
 23. The mean, mode and median are related by the relation (Approximate) (a) Mode = 3 median - 2 mean (b) Mean = 3 mode - 2 median (c) Mode = 3 mean - 2 median (d) None of the above
24. For a normal curve with \sim = 55 and $_{\sigma}$ = 10, how much area will be found under the curve to the right of the value 55 (a) 1.0 (b) 0.68 (c) 0.5 (d) 0.32
 25. For a two tailed test of hypothesis at a = 0.10, the acceptance region is the entire region: (a) To the right of the negative critical value (b) Between the two critical values (c) Outside the two critical values (d) To the left of positive critical value
26. If sample 1 has 13 elements with 81= 17 and sample 2 has 9 elements with 82 = 22, then pooled 82 is: (a) 19 (b) 361 (c) 367 (d) 1~.5
27. In double sampling we reject the batch if: (a) $d1 > C2$ (b) $d2 > C2$ (c) Either (a) or (b) (d) Neither (a) nor (b)
28. Assume that chi square test is to be performed on a contingency table with four rows and four columns. How many degrees of freedom should be used? (a) 10 (b) 8 (c) 9 (d) 6

29. The sum of first n natural numbers is:

- (a) n(n+1)/2
- (b) n(n+1)(2n+1)/6
- (c) n(n + 1) (n + 2)/2
- (d) n2
- 30. The number of proper subsets of a set of order 3 is:
- (a) 3
- (b) 6
- (c) 8
- (d) 9
- 31. If $f(x) = \log x$, then which of the following is *true*:
- (a) f(x + y) = f(x) + f(y)
- (b) f(x + y) = f(x).f(y)
- (c) f(xy) = f(x)f(y)
- (d) f(xy) = f(x) + f(y)
- 32. nC1 + nC2 + nC3 + + nCn =
- (a) $2nc_1$
- (b) n+tCn
- (c) 2n
- (d) 2n_ 1
- 33. If $f(x) = x^2 2x + 4$, then f(x) has:
- (a) Minimum at x = 1
- (b) Maximum at x = 1
- (c) No maximum
- (d) No minimum
- **34. lim** $\sin 2n / x$
- x-40 34.
- (a) 0
- (b) 1
- (c) 12
- (d) 2
- 35. The range of the function y = lIx is :
- (a) x > 0
- (b) x < 0
- (c) -l < x < l
- (d) x > 0, x < 0
- 36. One root of the equation $5x^2 + 13x + K = 0$ is the reciprocal of the other, if:
- (a) K = 0
- (b) K = 5
- (c) K = 6

37. Number of covalent bonds in P4010 is (a) 10 (b) 12 (c) 14 (d) 16
38. The bond order of H2, H2+ and He2+ (a) 1, 0.5 and 0.5 (b) 1, 0.5 and 1.5 (c) 1.5, 0.5 and 1 (d) 0.5, 0.5 and 1
 39. When reduced with lithium aluminium hydride, amino acids form (a) Amines (b) Amino alcohols (c) Salts (d) Esters
 40. The relationship between diethyl ether and methyl propyl ether is that they are: (a) Metamers (b) Functional isomers (c) Position isomers (d) Chain isomers Biotechnology 8
41. The Van't Hoff factor for 0.1 M Ba(N03 $^{\rm h}$ solution is 2.74. The degree of dissociation is: (a) 91.3% (b) 87% (c) 100% (d) 74%
42. An example of double salt is (a) Bleaching powder (b) K4Fe(CN)6 (c) .Hypo (d) Potash alum
43. The dry cell has an e.m.f. of 1.5 V and internal resistance of 0.5 Q. If the cell sends a current of 1A through an external resistance, the p.d. of the cell will be (a) 1.5 V (b) 1V (c) 0.5 V (d) 0 V

(d) K= 1/6

44. The expression of magnetic induction inside a solenoid of length L, carrying a current I and having N number of turns. is (a) flo/4n x Mlr2 (b) flo/4n x Mlr3 (c) flo/4n x 2M1r2 (d) flo/4n x 2M1r3
 45. The Fermi level lies midway between conduction and valence bands in (a) Intrinsic semiconductor (b) P-type semiconductor (c) N-type semiconductor (d) Extrinsic semiconductor
 46. Zener breakdown occurs: (a) Mostly in Germanium junctions (b) Due to rupture of covalent bonds (c) In lightly doped junctions (d) Due to thermally generated minority carriers
47. Which of the following is unipolar device?(a) P-N junction(b) Zener diode(c) Tunnel diode(d) Schottky diode
48. The ripple factor of half wave rectifier is (a) 1.21 (b) 1.11 (c) 0.48 (d) 0.406
 49. In a transistor, the resistance of base region is of the order of: (a) 1 Q (b) 100 Q (c) 1 kQ (d) 100 kQ
50, FET can be used as (a) Variable capacitor (b) Variable resistor (c) Constant voltage source (d) Negative resistance

51. An ideal amplifier has noise factor of :

(a) **O**db

(b) More than 0 db

(c) Unity (d) None of the above
52. Turn off time of thyristor:(a) Depends upon junction temperature and forward current(b) Is a constant(c) Depends on load(d) All of the above
53. If H is Hubble's constant, the age of universe is (a) V = Hr2 (b) V= Hr (c) V= Hfr (d) V = H/r2
54. The velocity of projection of a body is increased by 2%. Other factors remaining unchanged what will be the percentage change in the maximum height attained? (a) 1% (b) 2% (c) 4% (d) 8%
 55. Maximum value of static friction is called: (a) Limiting fraction (b) Rolling friction (c) Normal friction (d) Coefficient of friction
56. The work done in moving a body up a rough inclined plane is given by (a) mg sine x S (b) mg cosa x S (c) (mg sine + umg coss) x S (d) (mg sine - mg cosfl) x S
57. A body of mass 0.5 kg executes S.H.M. of frequency 4 Hz. The amplitude of S.H.M. is 1 cm. The maximum resting force is (take $n2=10$) (a) 0.32 N (b) 3.2 N (c) 32 N (d) 320 N

58. For measuring temperature near absolute zero, the thermometer used is :

- (a) Thermo-electric thermometer
- (b) Radiation thermometer
- (c) Magnetic thermometer
- (d) Resistance thermometer

59. The maximum wavelength of radiation emitted at 200 K is 4 urn. What will be the maximum wavelength of radiation emitted at 2400 K. (a) ·3.33 urn (b) 0.66 urn (c) l/lm (d) 1 m
60. Positive rays are (a) Ions (b) electrons (c) neutrons (d) electromagnetic waves
Section C
 61: Which of the following shows correct order of decreasing inductive effect? (a) F> Cl > Br > I (b) I> Br> Cl> F (c) Cl> F> I > Br (d) Br> I > F> Cl
62. Number of chiral carbons in tartaric acid is (a) 1 (b) 2 (c) 3 (d) 4.
63 Which of the following methods is <i>not</i> employed in the preparation of dicarboxylic acids? (a) Oxidation of glycols and hydroxy acids using K2Cr207 (b) Subjecting dicyanides to hydrolysis (c) Hydrolysis of malonic esters (d) Oxidation of cyclic alkenes
64. Which of the following is used in the determination of R.M. value of fat? (a) 1.5 N KOH (b) 1.0 N KOH (c) 0.1 N KOH (d) 0.005 N KOH
65. The compound in which C* uses <i>spa</i> hybridisation for bond formation is: (a) (b) (c) (d)
66. Oxidation number of S in 803- is: (a) '2 b)3 (c) 4 (d) 5

67. Calgon, used as water softener is: (a) Na2[Na4(P03)6] b) Na4[Na2(P03)6] (c) Na2[Na4(P04)5] (d) Na4[Na4(P04)6]
68. Mark the smallest atom: (a) F B)C1 (c) Br (d) I
 69. Which of the following is standard amino acid? (a) Ornithine (b)Homocysteine (c) Citrulline (d) None of the above
70. Proteins absorb light in: (a) Visible range (b) IR range (c) UV range (d) All of the above
71. In Lineweaver Burk plot, when 1/v is plotted against 1/[8] (a) Straight line is obtained (b) Sigmoidal curve is obtained (c) , Hyperbolic curve is obtained (d) None of the above
72. Concentrated acids cause dehydration of sugars to (a) Trans-enediol (b) Cis-enediol (c) Furfural (d) Furanose
73. Sphingosine is: (a) Branched sugar (b) Fatty acid (c) Amino alcohol (d) Ceramide
74. Terminator gene technology exploits the use of:(a) Promoter sequence

(b) Operator sequence(c) Repressor(d) Transcription terminator

- 75. Glucose and fructose can be distinguished by(a) Molish test.(b) Acetyl Chloride(c) Phenylhydrazine
- 76. An example of water soluble vitamin is

(d) Concentrated solution of alkali

- (a) Vitamin- A
- (b) Vitamin C
- (c) Vitamin D
- (d) Vitamin E
- 77. Supposeyou delete operator site from lac operon of E. coli. Which of the following effects would be observed?
- (a) No expression of lac 'gene
- (b) Constitutive expression of lac gene
- (c) Regulated expression of lac gene
- (d) Basal expression of lac gene
- 78. Which of the following binds ammo acid?
- (a) Acceptor arm
- (b) D arm
- (c) Anticodon arm
- (d) T\jfC-arm
- 79. In lac and Gal operons, CAP is responsible for :
- (a) De-repression
- (b) Constitutive activation
- (c) Regulated activation
- (d) None of the above
- 80. Si-RNA is an important tool to study:
- (a) Translation regulation
- (b) Gene silencing
- (c) Gene simulation
- (d) Gene amplification
- 81 Which of the following antibiotics inhibits translation?
- (a) Tetracycline
- (b) Puromycin
- (c) Chloramphenicol
- (d) All of the above
- 82. DNA fragment of interest can be detected by
- (a) Western blotting
- (b) Northern blotting

(c) outhern blotting (d) DNA fingerprinting
83. Which of the following could be a co-translational modification?(a) Phosphorylation(b) Glycosylation(c) Methylation(d) Acetylation
84. Immunoglobulin released in allergies is (a) IgA (b) IgG (c) IgD (d) IgE
85. Test cross is used to test: (a) Whether an individual is homozygous or heterozygous (b) Whether an individual is dominant or recessive (c) Whether parents were true breeding (d) All of the above
86. Which is 'not a non-degradable pollutant? (a) DDT (b) Sewage (c) Plastics (d) Heavy metals
87. A direct food relation between two species of animals in which one animal kills and feeds on another is referred to as: (a) Predation (b) Parasitism (c) Symbiosis (d) Scavenging
88. Cycas differs from pteris in having (a) Vessels and tracheids (b) Motile sperms (c) Pollen tube (d) Archegonia
89. Crassulacean acid metabolism (CAM) makes it possible for plants to survive in: (a) (b) (c) (d)
90. The genotypic ratio of F2 progeny of dihybrid cross is (a) 1:2:1 (b) 9:3:3:1

- (c) 3:1
- (d) 1:2:1:2:4:2:1:2:1
- 91. In areas where the incidence of malaria is high, healthier individuals should be:
- (a) Heterozygous for Hb"
- (b) Homozygous for Hbs
- (c) Either (a) or (b)
- (d) Neither (a) nor (b)
- 92. Rhesus monkey belongs to
- (a) Even toed ungulates
- (b) Odd toed ungulates
- (c) Edentates
- (d) Primates
- 93. Study of molluscs is called:
- (a) Malacology
- (b) Conchology
- (c) Mycology
- (d) Phycology
- 94. Heart of amphibians is:
- (a) Two chambered
- (b) Three chambered
- (c) Four chambered
- (d) Without chamber
- 95: Tube-within-tube plan is shown by
- (a) Coelentrates
- (b) Flatworms
- (c) Roundworms
- (d) Sponges
- 96. Hepatic portal vein is formed by
- (a) Lineogastric vein
- (b) Deodenal vein
- (c) Anterior mesenteric vein
- (d) All of the above
- 97. The optic nerve pierces through the retina, choroids and sclera at
- (a) Fovea
- (b) Blind spot
- (c) Pupil
- (d) Cornea
- 98. Removal of parathyroid results in
- (a) Calcium deficiency
- (b) Bone fracture

- (c) Death of the individual
- (d) Retardation of teeth formation
- 99. Lower aquatic animals are:
- (a) Ammonotelic
- (b) Ureotelic
- (c) Uricotelic
- (d) Can be all the above depending upon climatic conditio-ns
- 100. Conversion of fibrinogen into fibrin is catalysed by:
- (a) Prothrombin
- (b) Thromboplastin
- (c) Thrombin
- (d) Thrombinase

BIO-TEGHNOLOGY 2008

- 1. The contents of these chips are lost when the computer is switched off?
- (A) RAM chips
- (B) DRAM chips
- (C) ROM chips
- (D) None of the above
- 2. What would the binary number 1011 be in decimal notation?
- (A) 10
- (B). 11
- (C) 12
- (D) 13
- 3. Heat required to melt 1 g of ice is 80 cal. A man melts 60 g of ice by chewing in 1 min. His power is. :
- (A) 4800 W
- (B) 336 W
- (C) 1.33 W
- D) 0.75 W
- 5. If 5 mL of 0.15 M aCl is diluted to a [mal volume of 5 L what is the final concentration of NaCl?
- (A) 0.00015 M
- (B) 0.0015 M
- (C) 15000 M
- (D) None of the above

4. If $f(x) = xn$ then $d/dx f(x)$ is: (A) $Xn - 1$ (B) $Xn + Iln + 1$ (C) $nXn - 1$ (D) None of the above
6. Why does the vapor pressure of a solution decrease when an ionic compound is added to it?(A) The mole fraction of solvent is higher, causing a lower vapor pressure.(B) There are fewer solvent molecules at the surface, so fewer can vaporize and leave the solution.(C) Most solutes have a positive heat of solvation, causing the temperature of the solution to decrease.(D) none of the above
7. The molecular weight of glucose is 180. Express a blood glucose concentration of 80 mg per 100 ml in molarity.
(A) 0.44 M (B) 0.044 M (C) 0.0044 M (D) 04.40 M
8. Which of the following is the closest to the pH of a solution that contains 5 millimoles per litre of H+ions? (A) 1.2 (B) 2.3 (C) 3.7 (D) 6.5
9. What is the pKa of triethyl-ammonium in water, if the base ionization constant Kb for triethylamine is 7.4 x 10-5? (Log 7.4 x 10-5 = 4.13) (A) -4.13 (B) 2.87 (C) 4.13 (D)9.17
10. Which of the following is <i>not</i> a chaotropic agent? (A) Lithium chloride (B) Urea (C). Sodium chloride (D) Aluminium chloride
11. Solution properties of a phospholipid most appropriately match that of:(A) Glutamic acid(B) A purine base(C) Starch(D) All of the above
12. In its hydrogen bonding capacity water is followed by (A) Methanol

- (B) Urea
- (C) Chloroform
- (D) Glycerol
- 13. Phosphorolysis is a form of:
- (A) Hydrolysi
- (B) Pho phorylation
- (C) Electrolytic breakdown of ATP
- (D) Spontaneous accumulation of inorganic phosphate
- 14. Microsatellite sequence is:
- (A) A small palindrome
- (B) Extrachromosomal DNA
- (C) Short repetitive DNA
- (D) Looped-DNA
- 15. A DNA fragment is 5.7 kilo bases, if the entire fragment codes for polypeptide, the approximate number of amino acids in polypeptide would be
- (A) 1900
- (B) 2500
- (C) 5700
- (D) 170
- 16. In humans, right-handedness is dominant to left-handedness and the gene is autosomal. If A right-handed man, whose father was left-handed, married a left-handed woman, which of the following statements is *true*?
- (A) Man was homozygous and his wife was heterozygous
- (B) Man was heterozygous, his father was homozygous.
- (C) Man and his father were both homozygous
- (D) Man and his wife were both heterozygous
- 17. Small lipid soluble molecules move in and out of the cells by
- (A) Simple diffusion
- (B) Active transport
- (C) Facilitated diffusion
- (D) Pinocytosis
- 18. Plasmodesmata most closely resemble which of the following structure in animal cells?
- (A) Desmosomes
- (B) Gap junctions
- (C) Tight junctions
- (D) Ion channels
- 19. During which of the following stages of the cell cycle will a diploid cell contain twice the amount of DNA found in a gamete?
- (A) Prophase
- (B) Entire S phase

- (C) Entire G1 phase
- (D) Entire G2 phase
- 20. All of the following amino acids are converted to succinyl -CoA, except
- (A) Methionine
- (B) Isoleucine
- (C) Valine
- (D) Histidine
- 21. Major objective of glucose breakdown by glycolysis is
- (A) Energy production
- (B) Production of pyruvate
- (C) Production of 3 carbon intermediates
- (D) Regeneration of oxidized NAD+
- 22. A vitamin that has an important role in the formation of collagen fibers is:
- (A) Thiamine
- B)Tocopherol
- (C) Ascorbic acid
- D) Riboflavin
- 23. When human immunodeficiency virus (HIV) attaches to a host cell, what material is released into the host cell cytoplasm?
- (A) Viral toxins
- (B) RNA
- (C) DNA
- (D) Proteins
- 24. The main determinant of blood pressure is
- (A) Blood volume
- (B) Elasticity of arteries
- (C) Cardiac output
- (D) Peripheral resistance
- 25. The blood flows in the body because of:
- (A) Beating of the heart
- (B) Establishment of a pressure gradient
- (C) Contraction and relaxation of peripheral muscles
- (D) Elasticity of arteries
- 26. All of the following are associated with inspiration in mammals except
- (A) Increase in thoracic pressure
- (B) Contraction of external intercostal muscles
- (C) Lowering of diaphragm
- (D) Relaxation of internal intercostal muscles

- 27. In an acid environment oxygen splits more, readily from haemoglobin. This is governed by :
- (A) Dalton's Law
- (B) Henry's Law
- (C) Charles' Law
- (D) Bohr Effect
- 28. Cardio-acceleratory centre is located in
- (A) Cerebrum
- (B) Pons
- (C) Medula
- (D) Wall of the right atrium
- 29. Urine formation requires which of the following?
- (A) Glomerular filtration and tubular secretion only
- (B) Glomerular filtration and tubular reabsorption only
- (C) Glomerular-filtration, tubular reabsorption, and tubular secretion'
- (D) Tubular reabsorption and secretion only
- 30. Ethylene oxide finds an important use in Medical and Biological research as a
- (A) Long-term preservative
- (B) Respira tory aid.
- (C) Sterilizing agent
- (D) Anaesthetic agent
- 31. If an enzyme has a small value of KM, (Michaelis Menten constant) then it achieves maximal catalytic efficiency at
- (A) High substrate concentration
- (B) Low substrate concentration
- (C) Intermediate substrate concentration
- (D) None of the above
- 32. Which of the following element is least likely to be found on any + strand viral genomic RNA?
- (A) A cap
- (B) A packing ite
- (C) A binding ite for RNA Polymerase II
- (D) A binding site for ribosomes
- 33. Guttation in plants is favoured by
- (A) High humidity and dim light
- (B) Low humidity and dim light
- (C) Dim light only
- (D) None of the above
- 34. Which form of phytochrome pigment predominates during the day light in plant?
- (A) **P**R (phytochrome red)
- (B) PFR (ph tochromefar red)

 35. Which of the following effects is brought about by gibberellins but not by auxins? (A) Breaking of dormancy in leaf buds (B) Stimulation of cambial activity (C) Inhibition of leaf abscission (D) Stimulation of fruit development
36. Many organisms which are morphologically complex have much lesser genome than those which looks morphologically simple, this is called: (A) P-value paradox (B) C-value paradox (C) D-value paradox (D) G-value paradox
37. When the helices of a double the linking number stranded circular DNA molecule are opened, (A) Decreases (B) Increases (C) Does not change (D) Is always zero
38. Intrinsic torsion potential' refers to: (A). Freedom of rotation around a C-C single bond (B) Restriction of rotational freedom around C-N single bond in a nucleotide (C) Accommodation of some rotation around peptide bond (D) Reflection rotational capacity around <p 'i'="" and="" angles<="" td=""></p>
 39. Protein solubilization by salting in is associated with: (A) Excessive heat loss (B) Protein denaturation (C) Increase in protein ionization (D) All of the above
 40. "A" form of DNA can be converted to "B" form by (A) Denaturation (B) Dehydra tion (C) De-salting (D) De-proteination
41. Which of the following <i>cannot</i> have a helical structure? (A) <i>r-RNA</i> (B) Protein

(C) Both are predominate(D) None of the above

(C) m-RNA

(D) None of the above

- 42. The following are known to exist as a stable triple helix in nature?(A) Few forms of DNA(B) Some types of RNA(C) A few proteins
- 43. In molecular sieve chromatography, separating multiple species the internal volume:
- (A) Is uniformly accessible to all species

(D) Specialized polysaccharides

- (B) Is predominantly accessible to a species with highest concentration
- (C) Is predominantly accessible to a species with least molecular size
- (D) Is not accessible to any of the species
- 44. In gel filtration chromatography, smaller molecules will be fractionated in a
- (A) Larger elution volume
- (B) Smaller elution volume
- (C). Elution volume is not dependent on size
- (D) Smaller molecules come into void volume
- 45. Ionic detergents can increase the solubility of a species by
- (A) Increasing the dielectric constant of the solvent
- (B) Binding the hydrophobic portion of the species
- (C) Reducing the solute-solute interaction
- (D) All of the above
- 46. SDS-PAGE separates proteins based on the principle of :
- (A) Iso-electric focussing
- (B) Passage of current through an electrolyte
- (C) Gel filtration chromatography
- (D) Electromotive force
- 47. A solution shows transmittance of 10 on spectrophotometer, what is the absorbance of the solution ?
- (A) 1.0
- (B) 0.1
- (C). 10
- (D) 0.01-.
- 48. If a RNA solution is heated the absorbance will
- (A) Increase
- (B) Decrease
- (C) Will first increase and then decrease
- (D) Will not change
- 49. Base paring in nucleic acid strands is studied using a technique
- (A) X-ray diffraction
- (B) Infrared spectroscopy

- (C) MALDI
- (D) Scanning electron microscopy
- 50. X (chi) is the angle of rotation between:
- (A) Various bonds in phosphate group of nucleic acid backbone
- (B) C5' and the phosphate
- (C) C1' and the nitrogenous base
- (D) C1' and oxygen of the sugar
- 51. An E.coli strain lacking DNA polymerase I would be deficient in DNA
- (A) Repair
- (B) Methylation
- (C) Transcription
- (D) All of the above
- 52. Water of highest purity used in Molecular Biology research is indicated by the absence of :
- (A) Salt ions
- (B) Nucleases
- (C) Bacteria
- (D) Viruses
- 53. Isopropyl thiogalactoside is a
- (A) Physiological inducer
- (B) Repressor
- (C) Gratuitous inducer
- (D) None of the above
- 54. With respect to the *mRNA* start site, promoter of a gene can be located:
- (A) Upstream
- (B) Downstream
- (C) Either upstream or downstream
- (D) May not be present
- 55. Alkaline breakdown of nucleic acid is prevented by
- (A) Double stranded nature
- (B) 2'OH group
- (C) Deoxyribose sugar
- (D) Proteins associated with nucleic acid
- 56. When DNAis extracted from cells of E.coli and analyzed for base composition, it is found that 38% of the bases are cytosine. What percent of the bases are adenine?
- (A) 12%
- (B) 24%
- (C) '38%
- (D) 62%
- 57. A severe winter storm kills many chicks. An investigation comparing the body size of dead birds with that of survivors reveals that the dead birds included mainly the largest and the smallest members of the population. This winter storm exemplifies:

- (A) Kin selection
- (B) Stabilizing selection
- (C) Directional selection
- (D) Balanced selection
- 58. Which of the following IS NOT characteristic of all VIruses with DNA genome?
- (A) Replication occurs only in a living cell
- (B) Replication involves translation on cellular ribosomes
- (C) The viral nucleocapsid is surrounded by lipid envelope
- (D) The viral genome is surrounded by protein coat
- 59. Incubation of Gram-negative bacteria' with lysozyme in an isotonic medium causes rod shaped bacteria to assume a spherical shape. The cause of this phenomenon is:
- (A) Absorption of water
- (B) Destruction of the cell wall
- (C) Destruction of the cytoskeleton
- (D) .Damage to the plasma membrane
- 60. Which of the following six-membered ring compounds, has the most planar structure?
- (A) Glucose
- (B) Cytosine
- (C) Cyclohexane
- (D) Mannose